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Abstract

Neural networks are among the most accurate machine learning methods in use today.

However, their opacity and fragility to distribution shifts make them difficult to trust

in critical applications. Recent efforts to develop explanations for neural networks have

produced tools to shed light on the implicit rules behind predictions. These tools can help

us identify when networks are right for the wrong reasons, or equivalently that they will

fail under distribution shifts that should not affect predictions. However, such explanations

are not always at the right level of abstraction, and more importantly, cannot correct the

problems they reveal. In this thesis, we explore methods for training neural networks to

make predictions for better reasons, both by incorporating explanations into the training

process and by learning representations that better match human concepts. These methods

produce models that are more interpretable to users and more robust to distribution shifts.
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Chapter 1

Introduction

The motivation for this dissertation is easiest to express with a story:

A father decides to teach his young son what a sports car is. Finding it difficult to
explain in words, he decides to give some examples. They stand on a motorway
bridge and as each car passes underneath, the father cries out “that’s a sports
car!” when a sports car passes by. After ten minutes, the father asks his son if
he’s understood what a sports car is. The son says, “sure, it’s easy”. An old red
VW Beetle passes by, and the son shouts – “that’s a sports car!”. Dejected, the
father asks – “why do you say that?”. “Because all sports cars are red!”, replies
the son. [21]

There is another popular version that pokes fun at the Department of Defense:

In the early days of the perceptron the army decided to train an artificial neural
network to recognize tanks partly hidden behind trees in the woods. They took
a number of pictures of a woods without tanks, and then pictures of the same
woods with tanks clearly sticking out from behind trees. They then trained a net
to discriminate the two classes of pictures. The results were impressive, and the
army was even more impressed when it turned out that the net could generalize
its knowledge to pictures from each set that had not been used in training the net.
Just to make sure that the net had indeed learned to recognize partially hidden
tanks, however, the researchers took some more pictures in the same woods
and showed them to the trained net. They were shocked and depressed to find
that with the new pictures the net totally failed to discriminate between pictures
of trees with partially concealed tanks behind them and just plain trees. The
mystery was finally solved when someone noticed that the training pictures of
the woods without tanks were taken on a cloudy day, whereas those with tanks
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were taken on a sunny day. The net had learned to recognize and generalize the
difference between a woods with and without shadows! [61]

The first story is a parable and the second is apocryphal1, but both illustrate an inherent

limitation in learning by example, which is how we currently train machine learning systems:

we only provide them with inputs (questions, x) and outputs (answers, y). When we train

people to perform tasks, however, we usually provide them with explanations, since without

them many problems are ambiguous. In machine learning, model developers usually

circumvent such ambiguities via regularization, inductive biases (e.g. using convolutional

neural networks for translational invariance), or simply acquiring vast quantities of data

(such that the problem eventually becomes unambiguous, as if the child had seen every car

in the world). But there is still a risk our models will be right for the wrong reasons—which

means that if conditions change, they will simply be wrong.

As we begin to apply machine learning to sensitive domains such as healthcare, this risk

has highlighted the need for interpretable models, as this final story illustrates:

Although models based on rules were not as accurate as the neural net models,
they were intelligible, i.e., interpretable by humans. On one of the pneumonia
datasets, the rule-based system learned the rule “HasAsthma(x) ! Lower-
Risk(x)”, i.e., that patients with pneumonia who have a history of asthma have
lower risk of dying from pneumonia than the general population. Needless to
say, this rule is counterintuitive. But it reflected a true pattern in the training data:
patients with a history of asthma who presented with pneumonia usually were
admitted not only to the hospital but directly to the ICU (Intensive Care Unit).
The good news is that the aggressive care received by asthmatic pneumonia
patients was so effective that it lowered their risk of dying from pneumonia
compared to the general population. The bad news is that because the prognosis
for these patients is better than average, models trained on the data incorrectly
learn that asthma lowers risk, when in fact asthmatics have much higher risk (if
not hospitalized). [39]

In this case, a pneumonia risk prediction model learned an unhelpful rule because its

training outcomes were imperfect proxies for true medical risk. Had the model been put

into production, it would have endangered lives. The fact that they used an “interpretable”

1https://www.gwern.net/Tanks
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model architecture, in this case, helped them realize and avoid this danger (by not using the

neural network at all).

But, we should be troubled in at least two ways. First, what if the confounding variable

(asthma) was not one of the features available to the machine learning model, but instead,

there were a host of other variables that were weakly correlated with asthma? In practice,

such a model might treat these weakly correlated values as slightly less predictive of

mortality, and thus continue to underestimate asthmatic patients’ risk. But the effect would

be hidden, interpretable architecture or not. How can we detect and avoid such problems?

Second, though the dataset has confounds, it likely still contains information from which

a human analyst could extract useful clinical conclusions. Is there some way for machine

learning models to utilize this data, despite its flaws?

This thesis seeks to provide concrete methods for addressing these types of problems in

a number of specific cases, as well as a roadmap for how to solve them in general. Below

we provide an outline.

Part II (Input Gradient Penalties): In Part II, we consider a number of methods for

training neural networks with input gradient penalties, which can be interpreted as a form

of explanation regularization—i.e. optimizing a model to make predictions for specific reasons:

• Chapter 3, based on Ross et al. [2017], will explore how we can use input gradient

penalties to explicitly encode domain knowledge into any differentiable model’s train-

ing objectives. We will use these penalties to precisely control how models generalize

to test data from different distributions, which would otherwise be unobtainable by

normal optimization.

• Chapter 4, based on Ross et al. [2018] and Ross et al. [2020], will explore how input

gradient penalties can be applied within the context of ensembling to learn quantita-

tively and qualitatively diverse models that all perform well on the training set, but

extrapolate away from it in maximally different respects. We show how this method

can be useful for interpreting the dataset, quantifying its ambiguity, and achieving
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robustness to distribution shifts.

• Chapter 5, based on Ross and Doshi-Velez [2018], explores how input gradient regular-

ization can simultaneously improve robustness to adversarial examples (the worst-case

distribution shift) and interpretability (as demonstrated by a user study).

Part III (Interpretable Representations): Input gradients have a weakness that we alluded

to in our discussion of hidden confounders in the pneumonia example: sometimes the

“right reasons” are not easy to express in terms of input features. Instead, we might wish to

first learn a representation of the data in which our knowledge is easier to express. In Part III,

we make important progress towards learning interpretable (and correct) representations:

• Chapter 7, based on Ross et al. [2021], explores how we can design interactive user

studies to measure whether users understand representations—as having an accurate

method of measuring the interpretability of representations is critical for evaluating the

effectiveness of any method of learning them. We rigorously evaluate our evaluation

against baselines, both in synthetic cases (by comparing to ground-truth) and in real-

world cases (by evaluating the consistency of our quantitative metrics with metrics

from qualitative think-aloud studies).

• Chapter 8, based on Ross and Doshi-Velez [2021], introduces benchmarks, metrics,

and algorithms for learning representations with deep hierarchical structure—that is,

representations whose dimensions are organized into trees, only one branch of which

is active at a time. Enforcing such structure can both improve interpretability (since

models can be decomposed into simpler parts) and also faithfulness to the real-world

processes that may have generated the data (which are often hierarchical in structure).

Together, these contributions chart a path towards learning machine learning models

which are truly right for the right reasons: trained to make predictions in terms of concepts

their users understand, in ways that are consistent with what their users know.
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Part II

Input Gradient Penalties
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Chapter 2

Background on Input Gradients

In this chapter, we define input gradients, introduce notation, and review related work that

will be common across Part II.

2.1 Definitions and Related Work

Inputs X. The starting point for many questions in machine learning is some set of inputs,

which we might also call instances or examples, and which we generally refer to as x or X

(somewhat interchangeably, though X more frequently refers to a design matrix of many

inputs, while x more frequently refers to an individual input). In most cases we have N

such inputs, and each input Xn is generally a D-dimensional vector. Examples of inputs we

will consider include images, tabular data, medical records, and time series.

Targets y. We also often have a set of targets, which we might also call classes or labels,

which we generally denote y (which has one element yn corresponding to each input Xn). In

the following chapters, we will be primarily concerned with ys that represent the answers

to one-of-K classification problems; that is, each yn belongs to one of K different classes, and

is represented as a “one-hot” encoded vector.1 Although in general we consider the case

of multi-class classification (where K > 2), sometimes we also consider the special case of

1By one-hot encoding, we mean that if yn is of class k, its kth element is set to 1 and the rest are set to 0.
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binary classification, where y may instead be a variable in {0, 1} representing a true-or-false

outcome (e.g. whether x represents an image of a cat or a dog, or whether an intensive care

unit patient received fluids within 4 hours of the most recent measurement in x).

Data distributions p(x, y). In most cases, we assume inputs and targets are drawn in-

dependently and identically distributed from some data distribution p(x, y). In general,

we may not have access to a closed form expression for p(x, y) (e.g. if our data is coming

from an intensive care unit, where the process that generates the instances and targets

is complex and impossible to fully characterize), but instead just have a set of samples

drawn from it. Often, there will be multiple data distributions of interest, specifically a

training distribution and a test distribution. In most machine learning literature, these are

often assumed to be the same (which can be simulated from a static dataset by randomly

subdividing it into training and test sets). However, in this chapter, we will more frequently

consider cases where these distributions differ.

Discriminative models f (x; q). Frequently, our primary goal in machine learning is to

predict y given x over the support of p(x, y), and our strategy for achieving this goal is to

learn a discriminative model f such that f (x) ⇡ y. We might also refer f just as a model, a

function, or a network, and in the case of classification (the primary focus of this chapter),

we will refer to f as a classifier. For a particular x, y pair and set of parameters q, we might

shorten f (x; q) to ŷ for conciseness.

Under the hood, f is generally a neural network with some fixed architecture but a

variable set of parameters (or weights) q. Changing the parameters changes the function,

and in general we assume that for any function of interest over any finite domain, there

exists some q such f (·; q) closely approximates it [52]. f (·; q) (sometimes shortened to fq) is

assumed to be differentiable, both with respect to its parameters q and its inputs x.

Loss functions L(q). We learn models f (·; q) by trying to minimize a loss function L(q)

over their parameters. In the framework of empirical risk minimization [232], loss functions
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are often expressed as the expectation of some individual-instance loss ` over the data

distribution p(x, y), e.g.

L(q) = Ex,y⇠p(x,y) [`(y, f (x; q))] = E[`(y, ŷ)] (2.1)

Often, there is a probabilistic interpretation to loss functions as a negative log likelihood

� log p(y|ŷ) of observing the targets y given model predictions ŷ = f (x; q). In the case that

x and y represent multiple sets of independent and identically distributed draws from the

data distribution, the negative log likelihood naturally takes the form of a sum, which can

be interpreted as an expectation. In classification (where y is a one-hot encoded class label),

we often set L to be the average “cross-entropy” H, defined as

L(q) = Ex,y⇠p(x,y) [H(y, ŷ)] = Ex,y⇠p(x,y)

"
�

Dy

Â
k=1

yk log fq(x)k

#
. (2.2)

In practice, we will use stochastic gradient descent over small batches of data drawn from

the dataset, often using Adam [112], to approximately evaluate and minimize these loss

functions.

For classification, in addition to the loss function, we are also generally interested in the

accuracy metric Ex,y⇠p(x,y) [1(y = arg maxk f (x; q)k)], or the probability that the true class

label equals the class label with the greatest predicted probability (on new data drawn from

p(x, y)). We generally approximate this probability by taking an average over a held-out

test dataset.

Input gradients rx of f . In the following chapters, one of the primary quantities we will

analyze and penalize is the input gradient. In the special case that f (x) is a regressor that

outputs real numbers, then we need only consider rx f (x) (sometimes shortened to fx(x)),

i.e. the vector of partial derivatives
D

∂ f
∂x1

(x), ∂ f
∂x2

(x), . . . ∂ f
∂xD

(x)
E

.

However, in Part II, we are generally more concerned with f (x) which are classifiers.

To start, assume that f (x) is a binary classifier outputting a probability from 0 to 1. In this

case, we could analyze the gradients of the raw probabilities rx f (x) (and in Chapter 3 we
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will often visualize them), but they often suffer from problems of saturation: for points x

where f (x) ⇡ 0 or f (x) ⇡ 1, the actual probabilities change very little with changes in x, so

the gradients of many inputs are near 0 in magnitude and can underflow. Instead, we often

want to consider either the gradients of the log probability rx log f (x), or the network’s

“logits” (i.e. its raw outputs from �• to • that we convert to (0, 1) using the sigmoid

function). It is also often useful to consider the gradient of the log-odds rx log f (x)
1� f (x) .

Figure 2.1: Comparison of different input gradients of binary (top) and multi-class (bottom) classifiers (neural
networks with two hidden layers and ReLU activations, trained to near-100% accuracy on the datasets
shown in the leftmost plots). Gradients of specific probabilities are only nonzero near decision boundaries,
gradients of specific log-probabilities are nonzero over decision regions, and gradients of logits (raw �• to •
network outputs before conversion to probabilities) remain nonzero everywhere. The gradient of the sum of
log probabilities (rightmost plots) also generally remains nonzero, and can be interpreted as the information
distance between the model’s predictions and a maximally uncertain prediction. The gradients of most of these
quantities provide a normal to the decision boundary.

For multi-class classification (where we output multiple probabilities that sum to 1), we

could compute any of the above quantities for any of the individual outputs. In general,

though, we have a full Jacobian matrix to consider, and it is often useful to compute

various reductions. Although we have no analogue to the binary log-odds (log p/(1 � p)
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is most meaningful when there is only one probability), the gradient of the sum of log

probabilities (rx Âk log fq(xn)k) is often a particularly useful quantity to consider: it tends

to remain nonzero even when individual outputs saturate, and it can also be interpreted as

a cross-entropy between the output of f and a discrete uniform distribution (the information

distance between maximal and minimal uncertainty). Alternately, if ground-truth class

labels are available, the input gradient can be taken with respect to the cross entropy loss

(rx Âk ynk log fq(xn)k). A summary of different options is shown in Figure 2.1. Geometrically,

most of these input gradient variants are orthogonal to the classifier’s decision boundaries

(borders between regions where the classifier makes different predictions).

Distribution shifts, ambiguity, and robustness. In many cases, we are interested in the

performance of our models f under distribution shift, i.e. when considering data drawn

from some a testing distribution q(x, y) that differs from the training distribution p(x, y). If

our loss or accuracy under q is not too different from the loss under p (and if both are low

in absolute terms), we might say that fq is robust to the distribution shift from p to q.

Now, there are many kinds of possible distribution shifts, including the presence of an

adversary or changes in the association of confounding variables, and some make robustness

impossible (e.g. if the marginal distribution q(x) = p(x), but the conditional distribution

q(y|x) 6= p(y|x)). The type of distribution shift that motivates this dissertation is one

in which the original classification or regression problem is ambiguous in some sense;

that is, over the training distribution p(x, y), there are many parameters q that could all

separately approximately minimize Ep [`(y, f (x; q))], but only a (non-empty) subset of them

approximately minimize loss or maximize accuracy under both p and q (or more generally,

under some large set of distributions which Semenova et al. [2019] call a “Rashomon set”

after the Kurosawa classic; see also D’Amour et al. [2020] and Marx et al. [2020]). These are

cases where different, separately manipulable aspects of x can each redundantly predict

y, or more informally, where the same question could be answered for multiple reasons.

The beginning of Chapter 1 contains several examples, e.g. where a sports car might be

recognized at train time by either its shape or its color (or a complex nonlinear combination
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of both), but at test time only shape will suffice. To achieve robustness to these types of

shifts, it is sufficient (and may be necessary) for our models f to be right for the right reasons.

Interpretability, implicit decision rules, and explanations. Throughout this thesis, we

will generally follow Doshi-Velez and Kim [2017] in defining interpretability as the capacity

of a model f to be understood by its human users (e.g. doctors or chemists) in some relevant

context (e.g. treating patients or discovering molecules). This definition depends on having

coherent notions of the relevant context as well as human understanding, which we will

explore in much more detail in Part III when we consider representations.

However, in Part II, we will assume that classifiers have some implicit decision rules

for converting an input x into a prediction ŷ, which may be possible for a human user to

completely understand (in which case model is completely interpretable), or which may

be so complex that no human user could even partially understand them (in which case

the model is completely uninterpretable). We define explanations as any artifact that gives

a user information about the implicit decision rules of the model. Explanations based on

feature importance (i.e. an importance score for each dimension of x) have received a great

deal of attention (which we discuss below), but we define the term very broadly; simply

analyzing successes and failure cases can provide a great deal of explanatory insight [236, 6].

An explanation is useful insofar as it increases a human user’s understanding of the model

in a way that is contextually relevant.

Interpretability is distinct from explainability. It is possible that a model’s implicit

decision rules are simple for human users to understand, but nevertheless opaque, because

we lack a clear means of discovering or explaining them. Alternatively, it is possible that a

model’s implicit decision rules are completely transparent, but nevertheless incomprehensi-

ble, because they are too complicated for users to understand. We must not conflate the

transparency of a model with interpretability of the function it reifies.

For more general perspectives on interpretability, see also Lipton [2016] and Miller [2019].
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Input gradients as explanations. Input gradient components can be interpreted as the

weights of a linear model that best approximates the local behavior of a learned function, or

equivalently the sensitivity of a learned function output to small changes in an input feature.

By visualizing the magnitude and/or direction of each input gradient component (either for

an individual input or as a distribution across many inputs), we can gain insight into which

features most affect model predictions, and how. In this way, input gradients function have

explanatory value, especially if the number of features with significant gradient magnitude

(relative to the scale of the feature) is much smaller than the total number of features D, or

if there are coherent patterns in the positive / negative associations of each feature. Input

gradients received significant attention in the early days of interpretable machine learning

research as a promising technique [211, 137, 90]; see Baehrens et al. [2010] for a particularly

good introduction.

Alternative forms of feature importance. However, input gradients for large convolu-

tional networks often look “noisy” or seem difficult to interpret. While we will argue

later that this noisiness is often a property of the model, not the explanation, a number of

alternatives to “raw” input gradients have also been proposed as better or more interpretable

measurements of feature importance (which can be defined in various ways). Examples

include layer-wise relevance propagation [17], DeepLIFT [209], Contextual Decomposition

[164], Deep Taylor Decomposition [162], and Guided Backpropagation [219]. Some of them,

such as SmoothGrad [216], Integrated Gradients [222], and Expected Gradients [70] are

based on raw gradients but aggregated/averaged over paths/regions in input space, which

allows them capture larger-scale behavior or quantify a feature’s overall contribution to

a prediction (rather than the marginal effect of changing it infinitesimally). Shapley val-

ues [150], though difficult to compute, uniquely satisfy numerous axioms for how best to

attribute a nonlinear model’s predictions to each individual feature.

A full survey or comparison of these forms of feature importance is beyond the scope of

this thesis. For that, we refer readers to the growing literature on evaluation metrics and

sanity checks for feature importance scores [111, 5, 98]. However, we note that raw input
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gradients consistently pass such sanity checks, even if they sometimes seem less meaningful

for certain models. More recent works have achieved compelling results by regularizing

different quantities; Erion et al. [2019] and Rieger et al. [2020] are excellent examples. For

the purposes of this thesis, though, input gradients are still sufficiently meaningful to let us

demonstrate our general point: that explanation regularization can help us learn models

which are right for the right reasons.

Criticisms of feature importance (and alternatives). However, it is worth taking a step

back to consider the limitations of feature importances categorically. Rudin [2019] argues the

explanatory value of feature importance is often egregiously overstated, which user studies

support [42, 6, 49, 207]. Hancox-Li and Kumar [2021] argue from a more philosophical

perspective that there are serious epistemological problems with suggesting that a single

D-dimensional importance vector can somehow “explain” the predictions of an immensely

complex nonlinear model with millions or billions of parameters—and that the way we

implicitly characterize such artifacts as canonical or complete is both incorrect and potentially

harmful to people who will be affected by how the model is used and perceived.

In certain chapters of this thesis, we will still use the term “explanation” to describe

input gradients, despite its problematic connotation of completeness, because we want

to illustrate a more general idea (towards which we aspire, and hope to inspire others).

However, this term should be taken only to mean an artifact that provides any amount

of information, however small, about a model’s implicit decision rules. No explanation

completely describes its model, unless the model’s class is, per Rudin [2019], “inherently

interpretable.”

To that end, it is worth referring readers to a variety of model classes whose decision

rules are explicit and can be visualized in full (even if the functions they learn are difficult

to understand). Classic examples include logistic regression [114] and decision trees [231];

more recently, generalized additive models [39, 97], decision sets [131] and rule lists [230]

have become popular. Although these model architectures generally work best for relatively

low-dimensional inputs whose features have consistent meanings (and not for domains like
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audio or images), Chen et al. [2018] provide an approach for making predictions based

on transparent functions of similarity between new inputs and inputs from the training

set (though the similarity metric is learned and not necessarily simple). The strategy of

explaining predictions in terms of other instances can also be used directly for neural

networks, e.g. with influence functions [116] or Shapley value techniques applied to training

instances [77]. This approach has even been extended to explanation regularization by

Shao et al. [2021]. Finally, it can also be very useful just to consider higher-order feature

interactions. Shapley residuals [124] can help users understand to what extent a feature

importance explanation may be obscuring details about interactions. Archipelago [228]

actually attempts to quantify the importance of interactions (to arbitrarily high orders). To

summarize, we may be able to make machine learning models much more transparent by

either changing our model class (away from neural networks) or our explanation method

(away from feature importance).

But again, our goal in Part II is not to improve the transparency of machine learning

models, but instead to help them learn better functions—functions which are more robust

to distribution shifts, more consistent with expert knowledge, and which perhaps are

more understandable, even if difficult to visualize. For this task, input gradients remain

surprisingly effective. We will return to some of their deficiencies in Part III, however, when

we consider representations.

2.2 Outline of Part II

In the remaining chapters of Part II, we present three approaches for using input gradient

penalties to learn better functions:

• In Chapter 3, we use input gradient penalties (on the sum of log probabilities) to guide

neural networks towards or away from learning particular implicit decision rules on

ambiguous problems. We also introduce an iterative method for learning an ensemble

of neural networks that make predictions for different reasons.
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• In Chapter 4, we significantly improve on this ensemble learning method with local

independence training (LIT), which simultaneously trains neural networks to make

correct predictions with orthogonal gradients. We verify LIT is more effective than

baselines at recovering models which extrapolate in maximally diverse ways, which

can be helpful for interpretability, uncertainty quantification, robustness, and accuracy.

We also briefly explore how the size of the largest accurate LIT ensemble (for a given

regularization strength) may be a proxy for the degree of ambiguity present in the

dataset, or the size of the “Rashomon set” [203].

• In Chapter 5, we consider how input gradient penalties can help convolutional neural

networks achieve both improved adversarial robustness and interpretability. We

demonstrate a qualitative difference between gradient-regularized models and those

obtained by distillation or gradient masking defenses. Inspired by Ilyas et al. [2019],

we also discuss how adversarial vulnerability can be understood as another example

of dataset ambiguity.
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Chapter 3

Right for the Right Reasons: Training

Differentiable Models by

Constraining their Explanations1

3.1 Introduction

High-dimensional real-world datasets are often full of ambiguities. When we train classifiers

on such data, it is frequently possible to achieve high accuracy using classifiers with

qualitatively different decision boundaries. To narrow down our choices and encourage

robustness, we usually employ regularization techniques (e.g. encouraging sparsity or small

parameter values). We also structure our models to ensure domain-specific invariances (e.g.

using convolutional neural nets when we would like the model to be invariant to spatial

transformations). However, these solutions do not address situations in which our training

dataset contains subtle confounds or differs qualitatively from our test dataset. In these

cases, our model may fail to generalize no matter how well it is tuned.

1This chapter is based on Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. Right for the
right reasons: Training differentiable models by constraining their explanations. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, pages 2662–2670, 2017. doi: 10.24963/ijcai.2017/371. URL
https://doi.org/10.24963/ijcai.2017/371.
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Such generalization gaps are of particular concern for uninterpretable models such

as neural networks, especially in sensitive domains. For example, [39] describe a model

intended to prioritize care for patients with pneumonia. The model was trained to predict

hospital readmission risk using a dataset containing attributes of patients hospitalized at

least once for pneumonia. Counterintuitively, the model learned that the presence of asthma

was a negative predictor of readmission, when in reality pneumonia patients with asthma

are at a greater medical risk. This model would have presented a grave safety risk if used in

production. This problem occurred because the outcomes in the dataset reflected not just

the severity of patients’ diseases but the quality of care they initially received, which was

higher for patients with asthma.

This case and others like it have motivated recent work in interpretable machine learning,

where algorithms provide explanations for domain experts to inspect for correctness before

trusting model predictions. However, there has been limited work in optimizing models to

find not just the right prediction but also the right explanation. Toward this end, this chapter

makes the following contributions:

• We introduce a series of ambiguous prediction tasks, where class labels can be redun-

dantly predicted from inputs using multiple independent mechanisms.

• We confirm that both input gradient explanations and baseline sample-based explana-

tion methods (specifically LIME [183]) can be used to detect which mechanisms the

models use to make predictions.

• Given annotations about incorrect explanations for particular inputs, we efficiently

optimize the classifier to learn to make predictions using alternate mechanisms (to be

right for better reasons).

• When annotations are not available, we sequentially discover classifiers with similar

accuracies but qualitatively different decision boundaries for domain experts to inspect

for validity.

18



3.2 Related Work

Summarizing our discussion in Chapter 2, we briefly redefine several important terms in

interpretable machine learning. All classifiers have implicit decision rules for converting

an input into a decision, though these rules may be opaque. A model is interpretable if it

provides explanations for its predictions in a form humans can understand; an explanation

provides reliable information about the model’s implicit decision rules for a given prediction.

In contrast, we say a machine learning model is accurate if most of its predictions are correct,

but only right for the right reasons if the implicit rules it has learned generalize well and

conform to domain experts’ knowledge about the problem.

Explanations can take many forms [107] and evaluating the quality of explanations or

the interpretability of a model is difficult [142, 60]. However, within the machine learning

community there has been convergence [149] around local counterfactual explanations,

where we show how perturbing an input x in various ways will affect the model’s prediction

ŷ. This approach to explanations can be domain- and model-specific (e.g. “annotator

rationales” used to explain text classifications by [138, 134, 243]). Alternatively, explanations

can be model-agnostic and relatively domain-general, as exemplified by LIME (Local

Interpretable Model-agnostic Explanations, [183, 213]) which trains and presents local

sparse models of how predictions change when inputs are perturbed.

The per-example perturbing and fitting process used in models such as LIME can

be computationally prohibitive, especially if we seek to explain an entire dataset during

each training iteration. If the underlying model is differentiable, one alternative is to

use input gradients as local explanations (Baehrens et al. [2010] provides a particularly

good introduction; see also [202, 211, 137, 90]). The idea is simple: the gradients of the

model’s output probabilities with respect to its inputs literally describe the model’s decision

boundary (see Figure 2.1). They are similar in spirit to the local linear explanations of LIME

but much faster to compute.

Input gradient explanations are not perfect for all use-cases—for points far from the

decision boundary, they can be saturate and do not always capture the idea of salience (see

19



discussion and alternatives in Section 2.1). However, they are sufficient for regularizing

the decision boundary, given their close relationship with it. More broadly, relatively few

works on interpretable machine learning (as of the time the paper this chapter presents

was written) attempt to optimize explanations for correctness. For SVMs and specific text

classification architectures, there existed prior work on incorporating human input into

decision boundaries in the form of annotator rationales [240, 59, 243]. Unlike our approach,

these works are either tailored to specific domains or do not fully close the loop between

generating explanations and constraining them. More recently, a number of other works

have built upon the methods introduced in this chapter, making concrete improvements

[70, 63, 200, 235, 185, 220, 64]. We will discuss these in more detail later, but the methods we

introduce are still sufficient to demonstrate the general idea of explanation regularization.

3.3 Method

We wish to develop a method to train models that are right for the right reasons. If explana-

tions faithfully describe a model’s underlying behavior, then constraining its explanations to

match domain knowledge should cause its underlying behavior to more closely match that

knowledge too. We first describe how input gradient-based explanations lend themselves to

efficient optimization for correct explanations in the presence of domain knowledge, and

then describe how they can be used to efficiently search for qualitatively different decision

boundaries when such knowledge is not available.

3.3.1 Loss Functions that Constrain Explanations

When constraining input gradient explanations, there are at least two basic options: we can

either constrain them to be large in relevant areas or small in irrelevant areas. However,

because input gradients for relevant inputs in many models should be small far from the

decision boundary, and because we do not know in advance how large they should be, we

opt to shrink irrelevant gradients instead.

Formally, we define an annotation matrix A 2 {0, 1}N⇥D, which are binary masks
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indicating whether dimension d should be irrelevant for predicting observation n. We would

like rXŷ to be near 0 at these locations. To that end, we optimize a loss function L(q, X, y, A)

of the form

L(q, X, y, A) =
N

Â
n=1

K

Â
k=1

�ynk log(ŷnk)
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which contains familiar cross entropy and q regularization terms along with a new regu-

larization term that discourages the input gradient from being large in regions marked by

A. This term has a regularization parameter l1 which should be set such that the “right

answers” and “right reasons” terms have similar orders of magnitude; see Figure 3.10

for more details. Note that this loss penalizes the gradient of the log probability, which

performed best in practice, though in many visualizations we show fX, which is the gradient

of the predicted probability itself. Summing across classes led to slightly more stable results

than using the predicted class log probability max log(ŷk), perhaps due to discontinuities

near the decision boundary (though both methods were comparable). We did not explore

regularizing input gradients of specific class probabilities, though this would be a natural

extension.

Because this loss function is differentiable with respect to q, we can easily optimize it

with gradient-based optimization methods. We do not need annotations (nonzero An) for

every input in X, and in the case A = 0N⇥D, the explanation term has no effect on the

loss. At the other extreme, when A is a matrix of all 1s, it encourages the model to have

small gradients with respect to its inputs; this can improve generalization on its own [62].

Between those extremes, it biases our model against particular implicit rules.

This penalization approach enjoys several desirable properties. Alternatives that specify

a single Ad for all examples presuppose a coherent notion of global feature importance, but

when decision boundaries are nonlinear many features are only relevant in the context of

specific examples. Alternatives that simulate perturbations to entries known to be irrelevant

(or to determine relevance as in [183]) require defining domain-specific perturbation logic;
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our approach does not. Alternatives that apply hard constraints or completely remove

elements identified by And miss the fact that the entries in A may be imprecise even if they

are human-provided. Thus, we opt to preserve potentially misleading features but softly

penalize their use.

3.3.2 Find-Another-Explanation: Diverse Rule Discovery without Annotations

Although we can obtain the annotations A via experts as in [240], we may not always

have this extra information or know the “right reasons.” In these cases, we propose an

approach that iteratively adapts A to discover multiple models accurate for qualitatively

different reasons; a domain expert could then examine them to determine which is the right

for the best reasons. Specifically, we generate a “spectrum” of models with different decision

boundaries by iteratively training models, explaining X, then training the next model to

differ from previous iterations:

A0 = 0, q0 = arg min
q

L(q, X, y, A0),

A1 = Mc [ fX|q0] , q1 = arg min
q

L(q, X, y, A1),

A2 = Mc [ fX|q1] [ A1, q2 = arg min
q

L(q, X, y, A2),

. . .

where the function Mc returns a binary mask indicating which gradient components have

a magnitude ratio (their magnitude divided by the largest component magnitude) of at

least c and where we abbreviated the input gradients of the entire training set X at qi as

fX|qi. In other words, we regularize input gradients where they were largest in magnitude

previously. If, after repeated iterations, accuracy decreases or explanations stop changing

(or only change after significantly increasing l1), then we may have spanned the space of

possible models.2 All of the resulting models will be accurate, but for different reasons;

although we do not know which reasons are best, we can present them to a domain expert

2Though one can design simple pathological cases where we do not discover all models with this method;
we explore an alternative version in Chapter 4 that addresses some of these cases.
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for inspection and selection. We can also prioritize labeling or reviewing examples about

which the ensemble disagrees. Finally, the size of the ensemble provides a rough measure

of dataset redundancy.

3.4 Experiments

We demonstrate explanation generation, explanation constraints, and the find-another-

explanation method on a toy color dataset and three real-world datasets. In all cases, we

used a multilayer perceptron with two hidden layers of size 50 and 30, ReLU nonlinearities

with a softmax output, and a l2 = 0.0001 penalty on kqk2
2. We trained the network

using Adam [112] with a batch size of 256 and Autograd [159]. For most experiments, we

used an explanation L2 penalty of l1 = 1000, which gave our “right answers” and “right

reasons” loss terms similar magnitudes. More details about cross-validation are included in

Figure 3.10. For the cutoff value c described in Section 3.3.2 and used for display, we often

chose 0.67, which tended to preserve 2-5% of gradient components (the average number

of qualifying elements tended to fall exponentially with c). Code for all experiments is

available at https://github.com/dtak/rrr.

3.4.1 Toy Color Dataset

We created a toy dataset of 5 ⇥ 5 ⇥ 3 RGB images with four possible colors. Images fell into

two classes with two independent decision rules a model could implicitly learn: whether

their four corner pixels were all the same color, and whether their top-middle three pixels

were all different colors. Images in class 1 satisfied both conditions and images in class 2

satisfied neither. Because only corner and top-row pixels are relevant, we expect any faithful

explanation of an accurate model to highlight them.

In Figure 3.1, we see both LIME and input gradients identify the same relevant pixels,

which suggests that (1) both methods are effective at explaining model predictions, and (2)

the model has learned the corner rather than the top-middle rule, which it did consistently

across random restarts.
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Figure 3.1: Gradient vs. LIME explanations of nine perceptron predictions on the Toy Color dataset. For
gradients, we plot dots above pixels identified by M0.67 [ fX ] (the top 33% largest-magnitude input gradients),
and for LIME, we select the top 6 features (up to 3 can reside in the same RGB pixel). Both methods suggest
that the model learns the corner rule.

Figure 3.2: Implicit rule transitions as we increase l1 and the number of nonzero rows of A. Pairs of points
represent the fraction of large-magnitude (c = 0.67) gradient components in the corners and top-middle for
1000 test examples, which almost always add to 1 (indicating the model is most sensitive to these elements
alone, even during transitions). Note there is a wide regime where the model learns a hybrid of both rules.

However, if we train our model with a nonzero A (specifically, setting And = 1 for

corners d across examples n), we were able to cause it to use the other rule. Figure 3.2

shows how the model transitions between rules as we vary l1 and the number of examples

penalized by A. This result demonstrates that the model can be made to learn multiple

rules despite only one being commonly reached via standard gradient-based optimization

methods. However, it depends on knowing a good setting for A, which in this case would

still require annotating on the order of 103 examples, or 5% of our dataset (although always

including examples with annotations in Adam minibatches let us consistently switch rules

with only 50 examples, or 0.2% of the dataset).
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Figure 3.3: Rule discovery using find-another-explanation method with 0.67 cutoff and l1 = 103 for q1 and
l1 = 106 for q2. Note how the first two iterations produce explanations corresponding to the two rules in the
dataset while the third produces very noisy explanations (with low accuracies).

Additionally, Figure 3.3 shows we can use the find-another-explanation technique from

Sec. 3.3.2 to discover the other rule without being given A. Because only two rules lead to

high accuracy on the test set, the model performs no better than random guessing when

prevented from using either one (although we have to increase the penalty high enough that

this accuracy number may be misleading - the essential point is that after the first iteration,

explanations stop changing).

Lastly, though not directly relevant to the discussion on interpretability and explanation,

we demonstrate the potential of explanations to reduce the amount of data required for

training in Figure 3.4. In this experiment, we train with varying numbers of training

examples N on the Toy Color dataset, using four variants of A (with l1 chosen to match loss

terms at each N). We find that when A is set to the Pro-Rule 1 mask, which penalizes all

pixels except the corners, we reach 95% accuracy with fewer than 100 examples (as compared

to A = 0, where we need almost 10000). Penalizing the top-middle pixels (Anti-Rule 2) or

all pixels except the top-middle (Pro-Rule 2) also consistently improves accuracy relative

to data. Penalizing the corners (Anti-Rule 1), however, actually reduces accuracy until we
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Figure 3.4: Test accuracy by training set size on the Toy Color dataset for four different domain knowledge
incorporate strategies (baseline A = 0 approach in blue). Explanation regularization can potentially reduce
data requirements when encouraging the model to learn a simple rule (Pro-Rule 1, green on left) or discouraging
it from learning a complex rule (Anti-Rule 2, red on left). However, it actually increases data requirements
when discouraging the model from learning the simple rule (Anti-Rule 1, red on right).

reach a threshold N. This may be because the corner pixels can match in 4 ways, while the

top-middle pixels can differ in 4 · 3 · 2 = 24 ways, suggesting that Rule 2 could be inherently

harder to learn from data and positional explanations alone. These results suggest that

explanation regularization may indeed be useful for reducing data requirements, but the

magnitude and direction of the effect depends on the associated implicit decision rules.

3.4.2 Real-world Datasets

To demonstrate real-world, cross-domain applicability, we test our approach on variants of

three familiar machine learning text, image, and tabular datasets:

• 20 Newsgroups: As in [183], we test input gradients on the alt.atheism vs.

soc.religion.christian subset of the 20 Newsgroups dataset [140]. We used

the same two-hidden layer network architecture with a TF-IDF vectorizer with 5000

components, which gave us a 94% accurate model for A = 0.
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• Iris-Cancer: We concatenated all examples in classes 1 and 2 from the Iris dataset

with the the first 50 examples from each class in the Breast Cancer Wisconsin dataset

[140] to create a composite dataset X 2 R100⇥34, y 2 {0, 1}. Despite the dataset’s small

size, our network still obtains an average test accuracy of 92% across 350 random

2
3 - 1

3 training-test splits. However, when we modify our test set to remove the 4 Iris

components, average test accuracy falls to 81% with higher variance, suggesting the

model learns to depend on Iris features and suffers without them. We verify that our

explanations reveal this dependency and that regularizing them avoids it.

• Decoy MNIST: On the baseline MNST dataset [132], our network obtains 98% train

and 96% test accuracy. However, in Decoy MNIST, images x have 4 ⇥ 4 gray swatches

in randomly chosen corners whose shades are functions of their digits y in training (in

particular, 255 � 25y) but are random in test. On this dataset, our model has a higher

99.6% train accuracy but a much lower 55% test accuracy, indicating that the decoy

rule misleads it. We verify that both gradient and LIME explanations let users detect

this issue and that explanation regularization lets us overcome it.

Input gradients are consistent with sample-based methods such as LIME, and faster. On

20 Newsgroups (Figure 3.5), input gradients are less sparse but identify all of the same

words in the document with similar weights. Note that input gradients also identify words

outside the document that would affect the prediction if added.

On Decoy MNIST (Figure 3.6), both LIME and input gradients reveal that the model

predicts 3 rather than 7 due to the color swatch in the corner. Because of their fine-

grained resolution, input gradients sometimes better capture counterfactual behavior, where

extending or adding lines outside of the digit to either reinforce it or transform it into

another digit would change the predicted probability (see also Figure 3.11). LIME, on the

other hand, better captures the fact that the main portion of the digit is salient (because its

super-pixel perturbations add and remove larger chunks of the digit).

On Iris-Cancer (Figure 3.7), input gradients actually outperform LIME. We know from

the accuracy difference that Iris features are important to the model’s prediction, but LIME
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Figure 3.5: Words identified by LIME vs. gradients on an example from the atheism vs. Christianity subset of
20 Newsgroups. More examples are available at https://github.com/dtak/rrr. Words are blue if they support
soc.religion.christian and orange if they support alt.atheism, with opacity equal to the ratio of the magnitude
of the word’s weight to the largest magnitude weight. LIME generates sparser explanations but the weights
and signs of terms identified by both methods match closely. Note that both methods reveal some aspects of
the model that are intuitive (“church” and “service” are associated with Christianity), some aspects that are
not (“13” is associated with Christianity, “edu” with atheism), and some that are debatable (“freedom” is
associated with atheism, “friends” with Christianity).

only identifies a single important feature, which is from the Breast Cancer dataset (even

when we vary its perturbation strategy). This example, which is tabular and contains

continuously valued rather categorical features, may represent a pathological case for LIME,

which operates best when it can selectively mask a small number of meaningful chunks

of its inputs to generate perturbed samples. For truly continuous inputs, it should not be

surprising that explanations based on gradients perform best.

There are a few other advantages input gradients have over sample-based perturbation

methods. On 20 Newsgroups, we noticed that for very long documents, explanations

generated by the sample-based method LIME are often overly sparse (see Figures A.1 and

A.2), and there are many words identified as significant by input gradients that LIME

ignores. This may be because the number of features LIME selects must be passed in as a

parameter beforehand, and it may also be because LIME only samples a fixed number of

times. For sufficiently long documents, it is unlikely that sample-based approaches will mask
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Figure 3.6: Input gradient explanations for Decoy MNIST vs. LIME, using the LIME image library [182].
In this example, the model incorrectly predicts 3 rather than 7 because of the decoy swatch.

Figure 3.7: Iris-Cancer features identified by input gradients vs. LIME, with Iris features highlighted in
red. Input gradient explanations are more faithful to the model. Note that most gradients change sign when
switching between ŷ0 and ŷ1, and that the magnitudes of input gradients are different across examples, which
provides information about examples’ proximity to the decision boundary.

every word even once, meaning that the output becomes increasingly nondeterministic—an

undesirable quality for explanations. To resolve this issue, one could increase the number of

samples, but that would increase the computational cost since the model must be evalutated

at least once per sample to fit a local surrogate. Input gradients, on the other hand, only

require on the order of one model evaluation total to generate an explanation of similar

quality (generating gradients is similar in complexity to predicting probabilities), and

furthermore, this complexity is based on the vector length, not the document length. This

issue (underscored by Table 3.1) highlights some inherent scalability advantages input

gradients enjoy over sample-based perturbation methods.

Given annotations, input gradient regularization finds solutions consistent with domain
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Table 3.1: Runtimes for gradients vs. LIME.

LIME Gradients Dimension of x
Iris-Cancer 0.03s 0.000019s 34
Toy Colors 1.03s 0.000013s 75

Decoy MNIST 1.54s 0.000045s 784
20 Newsgroups 2.59s 0.000520s 5000

Gradient vs. LIME runtimes per explanation. Note that each method uses a different version of LIME;
Iris-Cancer and Toy Colors use lime_tabular with continuous and quartile-discrete perturbation methods,
respectively, Decoy MNIST uses lime_image, and 20 Newsgroups uses lime_text. Code was executed
on a laptop and input gradient calculations were not optimized for performance, so runtimes are only meant to
provide a sense of scale.

Figure 3.8: Overcoming confounds using explanation constraints on Iris-Cancer (over 350 random train-test
splits). By default (A = 0), input gradients tend to be large in Iris dimensions, which results in lower accuracy
when Iris is removed from the test set. Models trained with And = 1 in Iris dimensions (full A) have almost
exactly the same test accuracy with and without Iris.

knowledge. Another key advantage of using an explanation method more closely related

to our model is that we can then incorporate explanations into our training process, which

are most useful when the model faces ambiguities in how to classify inputs. We deliberately

constructed the Decoy MNIST and Iris-Cancer datasets to have this kind of ambiguity, where

a rule that works in training will not generalize to test. When we train our network on these

confounded datasets, their test accuracy is better than random guessing, in part because

the decoy rules are not simple and the primary rules not complex, but their performance

is still significantly worse than on a baseline test set with no decoy rules. By penalizing

explanations we know to be incorrect using the loss function defined in Section 3.3.1, we are

30



Figure 3.9: Training with explanation constraints on Decoy MNIST. Accuracy is low (A = 0) on the swatch
color-randomized test set unless the model is trained with And = 1 in swatches (full A). In that case, test
accuracy matches the same architecture’s performance on the standard MNIST dataset (baseline).

able to recover that baseline test accuracy, which we demonstrate in Figures 3.8 and 3.9.

When annotations are unavailable, our find-another-explanation method discovers di-

verse classifiers. As we saw with the Toy Color dataset, even if almost every row of A is 0,

we can still benefit from explanation regularization (meaning practitioners can gradually

incorporate these penalties into their existing models without much upfront investment).

However, annotation is never free, and in some cases we either do not know the right

explanation or cannot easily encode it. Additionally, we may be interested in exploring the

structure of our model and dataset in a less supervised fashion. On real-world datasets,

which are usually overdetermined, we can use find-another-explanation to discover qs in

shallower local minima that we would normally never explore. Given enough models right

for different reasons, hopefully at least one is right for the right reasons.

Figure 3.11 shows find-another-explanation results for our three real-world datasets,

with example explanations at each iteration above and model train and test accuracy below.

For Iris-Cancer, we find that the initial iteration of the model heavily relies on the Iris

features and has high train but low test accuracy, while subsequent iterations have lower

train but higher test accuracy (with smaller gradients in Iris components). In other words,

we spontaneously obtain a more generalizable model without a predefined A alerting us

that the first four features are misleading.
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Figure 3.10: Test accuracy by l1 on Decoy MNIST. Because training and validation sets share the same
misleading confounds, validation accuracy is a poor proxy for test accuracy. Instead, we find the regime of
highest accuracy (highlighted) is where the initial cross-entropy and l1 loss terms have similar magnitudes;
we recommend choosing l1 in this manner. Note that exact equality does not seem to be required; being an
order of magnitude off does not significantly affect accuracy.

Find-another-explanation also overcomes confounds on Decoy MNIST, needing only one

iteration to recover baseline accuracy. Bumping l1 too high (to the point where its term is

a few orders of magnitude larger than the cross-entropy) results in more erratic behavior.

Interestingly, in a process remniscent of distillation [174], the gradients themselves become

more evenly and intuitively distributed at later iterations. In many cases they indicate that

the probabilities of certain digits increase when we brighten pixels along or extend their

distinctive strokes, and that they decrease if we fill in unrelated dark areas, which seems

desirable. However, by the last iteration, we start to revert to using decoy swatches in some

cases.

On 20 Newsgroups, the words most associated with alt.atheism and

soc.religion.christian change between iterations but remain mostly intuitive in their

associations. Train accuracy mostly remains high while test accuracy is unstable.

For all of these examples, accuracy remains high even as decision boundaries shift

significantly. This may be because real-world data tends to contain significant redundancies.
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3.4.3 Limitations

Input gradients provide faithful information about a model’s rationale for a prediction but

trade interpretability for efficiency. In particular, when input features are not individually

meaningful to users (e.g. for individual pixels or word2vec components), input gradients

may be difficult to interpret and A may be difficult to specify. Additionally, because they

can be 0 far from the decision boundary, they do not capture the idea of salience as well

as other methods [241, 222, 162, 17, 209]. However, they are necessarily faithful to the

model and easy to incorporate into its loss function. Input gradients are first-order linear

approximations of the model; we might call them first-order explanations.

3.5 Conclusion

In this chapter, we showed that:

• On training sets that contain confounds which would fool any model trained just to

make correct predictions, we can use gradient-based explanation regularization to learn

models that still generalize to test. These results imply that gradient regularization

actually changes why our model makes predictions.

• When we lack expert annotations, we can still use our method in an unsupervised

manner to discover models that make predictions for different reasons. This “find-

another-explanation” technique allowed us to overcome confounds on Decoy MNIST

and Iris-Cancer, and even quantify the ambiguity present in the Toy Color dataset.

• Input gradients are consistent with sample-based methods such as LIME but faster to

compute and sometimes more faithful to the model, especially for continuous inputs.

Our consistent results on several diverse datasets show that input gradients merit further

investigation as building blocks for optimizable explanations; there exist many options for

further advancements such as weighted annotations A, different penalty norms, and more
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general specifications of whether features should be positively or negatively predictive of

specific classes for specific inputs.

Finally, our “right for the right reasons” approach may be of use in solving related

problems, e.g. in integrating causal inference with deep neural networks or maintaining

robustness to adversarial examples (which we discuss in Chapter 5). Building on our

find-another-explanation results, another promising direction is to let humans in the loop

interactively guide models towards correct explanations. Overall, we feel that developing

methods of ensuring that models are right for better reasons is essential to overcoming the

inherent obstacles to generalization posed by ambiguities in real-world datasets.
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Figure 3.11: Find-another-explanation results on Iris-Cancer (top; errorbars show standard deviations across
50 trials), 20 Newsgroups (middle; blue supports Christianity and orange supports atheism, word opacity set to
magnitude ratio), and Decoy MNIST (bottom, for three values of l1 with scatter opacity set to magnitude ratio
cubed). Real-world datasets are often highly redundant and allow for diverse models with similar accuracies.
On Iris-Cancer and Decoy MNIST, both explanations and accuracy results indicate we overcome confounds
after 1-2 iterations without any prior knowledge about them encoded in A.
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Chapter 4

Ensembles of Locally Independent

Prediction Models1

In Section 3.3.2 of the previous chapter, we introduced “find-another-explanation,” an

iterative method of training an ensemble of classifiers to make predictions for different

reasons by sequentially augmenting A to penalize more features. However, this method has

a number of limitations, which this chapter will study and work to overcome.

To illustrate these limitations, let us return to the sports car parable from Chapter 1. In

this parable, there are at least two implicit decision rules that could allow for the prediction

of whether a passing automobile is a sports car. The correct rule (according to the father) is

based on shape, but it is also possible to make a prediction based solely on color (whether

the car is red), which is what seems simplest to the son.

In the framework of find-another-explanation, we might hope that an initial model

(mimicking the son) would learn to place all of its importance on color, so that a subsequent

model, forbidden from considering color, would instead favor shape (assuming for a

moment these rules require different features, at least locally). However, it is also possible

1This chapter is based on Andrew Ross, Weiwei Pan, and Finale Doshi-Velez. Learning qualitatively diverse
and interpretable rules for classification. In 2018 ICML Workshop on Human Interpretability in Machine Learning,
2018. URL https://arxiv.org/abs/1806.08716 and Andrew Slavin Ross, Weiwei Pan, Leo Anthony Celi,
and Finale Doshi-Velez. Ensembles of locally independent prediction models. In Thirty-Fourth AAAI Conference
on Artificial Intelligence, 2020. URL https://arxiv.org/abs/1911.01291.
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that the initial model might learn to place importance on both shape and color. The simplest

combination might be a static linear combination of 50% shape and 50% color. If that

occurred, find-another-explanation would be helpless, because both implicit decision rules

would be represented in the corresponding annotation matrix A1; subsequent models would

either learn the same thing or nothing.

To make matters worse, it could also be the case that the resulting implicit decision

rule becomes much less interpretable than either the shape rule or the color rule alone:

color could be responsible for 70-90% of the prediction, except on cloudy days, when its

contribution might fall to only 10-30%, but not for Toyota sports cars, which have a much

more recognizable shape that makes predictions locally invariant to color. Models with

such implicit decision rules would be equally accurate on the training set, and it is unclear

whether any knowledge-agnostic form of regularization would prevent us from learning

them. The very fact that a prediction problem may be solved by multiple interpretable

models may preclude us from learning any of them.

The method we present in this Chapter is to simultaneously learn a diverse ensemble of

models that are encouraged to make the same predictions but extrapolate in maximally

different ways. We find that this can sometimes help us learn ensembles whose members

are individually more interpretable than any model we could learn on its own, which was

our main motivation for developing the method. However, we also spend significant time in

this Chapter focusing on more traditional metrics for evaluating ensemble methods, such as

predictive accuracy, robustness to distribution shifts, and the correlation of errors on new

data, as we find our method to be helpful in this sense as well.

4.1 Introduction

An ensemble is generally more accurate than its constituent models. However, for this to

hold true, those models must make different errors on unseen data [86, 58]. This is often

described as the ensemble’s “diversity.”

Despite diversity’s well-recognized importance, there is no firm consensus on how best
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to foster it. Some procedures encourage it implicitly, e.g. by training models with different

inputs [30], while others explicitly optimize for proxies [144] that tend to be functions of

differences in training set predictions [125, 32].

However, there has been increasing criticism of supervised machine learning for fo-

cusing too exclusively on cases where training and testing data are drawn from the same

distribution [139]. In many real-world settings, this assumption does not hold, e.g. due to

natural covariate shift over time [179] or selection bias in data collection [239]. Intuitively,

we might hope that a “diverse” ensemble would more easily adapt to such problems, since

ideally different members would be robust to different shifts. In this paper, however, we find

that diverse ensemble methods that only encourage differences in training predictions often

perform poorly under mild drift between training and test, in large part because models

are not incentivized to make different predictions where there is no data. We also find

that ensemble methods that directly optimize for diverse training predictions face inherent

tradeoffs between diversity and accuracy and can be very sensitive to hyperparameters.

To resolve these issues, we make two main contributions, specifically (1) a novel and

differentiable diversity measure, defined as a formal proxy for the ability of classifiers

to extrapolate differently away from data, and (2) a method for training an ensemble of

classifiers to be diverse by this measure, which we hypothesize will lead to more robust

predictions under distributional shifts with no inherent tradeoffs between diversity and

accuracy except those imposed by the dataset. We find this hypothesis holds on a range of

synthetic and real-world prediction tasks.

4.2 Related Work

Ensembling is a well-established subfield of supervised learning [30, 31, 96, 196], and

one of its important lessons is that model diversity is a necessary condition for creating

predictive and robust ensembles [120]. There are a number of methods for fostering diversity,

which can be roughly divided into two categories: those that implicitly promote diversity

by random modifications to training conditions, and those that explicitly promote it by
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deliberate modifications to the objective function.

Some implicit diversity methods operate by introducing stochasticity into which models

see which parts of the data, e.g. by randomly resampling training examples [30] or subsets

of input features [31]. Others exploit model parameter stochasticity, e.g. by retraining from

different initializations [117] or sampling from parameter snapshots saved during individual

training cycles [99].

Methods that explicitly encourage diversity include boosting [196, 74], which sequentially

modifies the objective function of each model to specialize on previous models’ mistakes, or

methods like negative correlation learning [144] amended cross-entropy [208], and DPPs

over non-maximal predictions [171], which simulateously train models with penalities on

both individual errors and pairwise similarities. Finally, methods such as Diverse Ensemble

Evolution [244] and Competition of Experts [176] use explicit techniques to encourage

models to specialize in different regions of input space.

Although at first glance these diverse training techniques seem quite diverse themselves,

they are all similar in a crucial respect: they encourage diversity in terms of training set

predictions. In the machine learning fairness, adversarial robustness, and explainability

communities, however, there has been increasing movement away from the assumption that

train is similar to test. For example, many methods for locally explaining ML predictions lit-

erally present simplified approximations of how models extrapolate away from given points

[19, 183, 190], while adversarial attacks (and defenses) exploit (and mitigate) pathological

extrapolation behavior [224, 152], sometimes in an ensemble setting [226]. Although our

focus is not explicitly on explanability or adversarial robustness, our method can be seen as

a reapplication of techniques in those subfields to the problem of ensemble diversity.

Also related is the subfield of streaming data, which sometimes uses ensemble diversity

metrics as a criteria for deciding when covariates have shifted sufficiently to warrant

retraining [33, 119]. Although our focus remains on non-streaming classification, the

method we introduce may be applicable to that domain.
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4.3 Method

In this section, building on Ross et al. [2018], we define our diversity measure and training

procedure, beginning with notation. We use x to denote D-dimensional inputs, which

are supported over an input space Wx ✓ RD. We use y to denote prediction targets in an

output space Wy. In this paper, Wy will be R, and we focus on the case where it represents a

log-odds used for binary classification, but our method can be generalized to classification or

regression in RK given any notion of distance between outputs. We seek to learn prediction

models f (·; q) : Wx ! Wy (parameterized by q) that estimate y from x. We assume these

models f are differentiable with respect to x and q (which is true for linear models and

neural networks).

In addition, we suppose a joint distribution over inputs and targets p(x, y) and a distribu-

tion p(y| f (x; q)) quantifying the likelihood of the observed target given the model prediction.

Typically, during training, we seek model parameters that maximize the likelihood of the

observed data, Ep(x,y) [log p(y| f (x; q))].

4.3.1 Diversity Measure: Local Independence

We now introduce a model diversity measure that quantifies how differently two models gen-

eralize over small patches of the data manifold Wx. Formally, we define an e-neighborhood

of x, denoted Ne(x), on the data manifold to be the intersection of an e-ball centered at x

in the input space, Be(x) ⇢ RD, and the data manifold: Ne(x) = Be(x) \ W. We capture

the notion of generalization difference on a small neighborhood of x through an intuitive

geometric condition: we say that two functions f and g generalize maximally differently at

x if f is invariant in the direction of of the greatest change in g (or vice versa) within an

e-neighborhood around x. That is:

f (x) = f
�
xgmax

�
, for all e0 < e, (4.1)

where we define xgmax = arg max
x02Ne0 (x)

g(x0). In other words, perturbing x by small amounts to

increase g inside Ne does not change the value of f . In the case that a choice of e exists to
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satisfy Equation 4.1, we say that f is locally independent at x. We call f and g locally independent

without qualification if for every x 2 Wx the functions f and g are locally independent at x

for some choice of e. We note that in order for the right-hand side expression of 4.1 to be

well-defined, we assume that the gradient of g is not zero at x and that e is chosen to be

small enough that g is convex or concave over Ne(x).

In the case that f and g are classifiers, local independence intuitively implies a kind

of dissimilarity between their decision boundaries. For example, if f and g are linear and

the data manifold is Euclidean, then f and g are locally independent if and only if their

decision boundaries are orthogonal.

This definition motivates the formulation of a diversity measure, IndepErr( f , g), quanti-

fying how far f and g are from being locally independent:

IndepErr( f , g) ⌘ E
h�

f
�
xgmax

�
� f (x)

�2
i

. (4.2)

4.3.2 Local Independence Training (LIT)

Using Equation 4.2, we can formulate an ensemble-wide loss function L for a set of models

{qm} as follows, which we call local independence training:

L({qm}) = Â
m

Ep(x,y) [� log p(y| f (x; qm))] + l Â
` 6=m

IndepErr( f (·; qm), f (·; q`)). (4.3)

The first term encourages each model fm to be predictive and the second encourages diversity

in terms of IndepErr (with a strength hyperparameter l). Computing IndepErr exactly,

however, is challenging, because it requires an inner optimization of g. Although it can be

closely approximated for fixed small e with projected gradient descent as in adversarial

training [152], that procedure is computationally intensive. If we let e ! 0, however, we can

approximate xgmax by a fairly simple equation that only needs to compute rg once per x. In

particular, we observe that under certain smoothness assumptions on g, with unconstrained
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Wx,2 and as e ! 0, we can make the approximation

xgmax ⇡ x + erg(x). (4.4)

Assuming similar smoothness assumptions on f (so we can replace it by its first-order Taylor

expansion), we see that

f (xgmax)� f (x) ⇡ f (x + erg(x))� f (x)

=
⇥

f (x) + er f (x) ·rg(x) +O(e2)
⇤
� f (x)

⇡ er f (x) ·rg(x).

(4.5)

In other words, the independence error between f and g is approximately equal to the dot

product of their gradients r f (x) ·rg(x). Empirically, we find it helpful to normalize the

dot product and work in terms of cosine similarity cos(r f (x),rg(x)) ⌘ r f (x)·rg(x)
||r f (x)||2||rg(x)||2

2

[�1, 1]. We also add a small constant value to the denominator to prevent underflow.

Alternate statistical formulation: Our local independence penalty can also be interpreted

as a way of enforcing statistical independence between changes in each function when we

add infinitesimal Gaussian perturbations to our data points. More formally, let x 2 RD be

a data point, let f1 and f2 be functions from RD ! R, and let e ⇠ N (0, s21) be a small

perturbation. Taylor expanding f1 and f2 around x and assuming all gradients are nonzero,

fi(x + e) ⇡ fi(x) +r fi(x) · e +O(e · e)

Defining the changes in each fi under the perturbation of x to be D fi(x), and assuming that

all gradients are nonzero at x and that we select s2 to be small enough that ||e||2 ⌧ ||e||

with high probability, we have

D fi(x) ⌘ fi(x + e)� fi(x) ⇡ r fi(x) · e

2The simplifying assumption that Ne(x) ⇡ Be(x) in a local neighborhood around x is significant, though
not always inappropriate. We discuss both limitations and generalizations in Section B.1.
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If we now consider Cov(D f1(x), D f2(x)), the covariance of the changes in each function

(which we term the “local covariance” between f1 and f2 at x), we see that

Cov(D f1(x), D f2(x))

⇡ E[(r f1(x) · e � E[r f1(x) · e])

(r f2(x) · e � E[r f2(x) · e])]

= E[(r f1(x) · e)(r f2(x) · e)]

= E[e · e]r f1(x) ·r f2(x)

= s2
r f1(x) ·r f2(x)

Normalizing this quantity, we see the local correlation is

Corr(D f1(x), D f2(x)) =
r f1(x) ·r f2(x)

||r f1(x)||2||r f2(x)||2

= cos(r f1(x),r f2(x)).

Finally, let’s consider the distribution of D fi(x). Since D fi(x) is approximately equal to

r fi(x) · e, which is a dot product between a deterministic vector (r fi(x)) and a Gaussian

sample (e), then D f1(x) and D f2(x) are approximately equal to sums of Gaussian random

variables and are therefore themselves Gaussian. Noting that the entropy of Gaussians with

covariance matrices S is H(X) = 1
2 ln(2pe|S|) and for a bivariate Gaussian random variable

(X, Y), its covariance determinant |S| = Var(X)Var(Y)� Cov(X, Y)2,

I(X, Y) = H(X) + H(Y)� H(X, Y)

=
1
2

ln
✓

Var(X)Var(Y)
Var(X)Var(Y)� Cov(X, Y)2

◆

= �
1
2

ln
✓

1 �
Cov(X, Y)2

Var(X)Var(Y)

◆

= �
1
2

ln
�
1 � Corr(X, Y)2� .

So, between two 1D Gaussians, zero correlation implies statistical independence. Therefore,

making the input gradients of f1 and f2 orthogonal is equivalent to enforcing statistical

independence between their outputs when we perturb x with samples from N (0, s2 )
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as s ! 0 (assuming the gradients are nonzero, which in general will be true except at

individual points). This could be used as an alternate definition of “local independence.”

Final LIT objective term: Motivated by the approximations and discussion above, we

substitute

CosIndepErr( f , g) ⌘ E
⇥
cos2(r f (x),rg(x))

⇤
(4.6)

into our ensemble loss from Equation (4.3), which gives us a final loss function

L({qm}) = Â
m

Ep(x,y) [� log p(y| f (x; qm))] + l Â
` 6=m

Ep(x)
⇥
cos2(r f (x; qm),r f (x; q`))

⇤
(4.7)

Note that we will sometimes abbreviate CosIndepErr as rcos2 . In Section 4.4 as well as

Figure B.5, we show that CosIndepErr is meaningfully correlated with other diversity

measures and therefore may be useful in its own right, independently of its use within a

loss function.

In relation to “right for the right reasons” loss of Chapter 3, we can also understand

this loss as encouraging each network to the right predictions but for maximally different

reasons. It differs from the “find-another-explanation” method of Section 3.3.2 however, in

that models are trained jointly, and that models can use the same sets of features as long as

gradients are orthogonal. This allows LIT to achieve diversity on a much wider set of cases

than find-another-explanation.

4.4 Experiments

On synthetic data, we show that ensembles trained with LIT exhibit more diversity in

extrapolation behavior. On a range of benchmark datasets, we show that the extrapolation

diversity in LIT ensembles corresponds to improved predictive performance on test data

that are distributed differently than train data. Finally, in a medical data case study, we show

that models in LIT ensembles correspond to qualitatively different and clinically meaningful

explanations of the data.
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Training: For the experiments that follow, we use 256-unit single hidden layer fully

connected neural networks with rectifier activations, trained in Tensorflow with Adam. For

the real-data experiments, we use dropout and L2 weight decay with a penalty of 0.0001.

Code to replicate all experiments is available at https://github.com/dtak/lit.

Baselines: We test local independence training (“LIT”) against random restarts (“RRs”),

bagging [30] (“Bag”), AdaBoost [89] (“Ada”), 0-1 squared loss negative correlation learning

Liu and Yao [1999] (“NCL”), and amended cross-entropy [208] (“ACE”). We omit Zhou

et al. [2018] and Parascandolo et al. [2018] which require more complex inner submodular

or adversarial optimization steps, but note that because they also operationalize diversity as

making different errors on training points, we expect the results to be qualitatively similar

to ACE and NCL.

Hyperparameters: For our non-synthetic results, we test all methods with ensemble sizes

in {2, 3, 5, 8, 13}, and all methods with regularization parameters l (LIT, ACE, and NCL)

with 16 logarithmically spaced values between 10�4 and 101, using validation AUC to select

the best performing model (except when examining how results vary with l or size). For

each hyperparameter setting and method, we run 10 full random restarts (though within

each restart, different methods are tested against the same split), and present mean results

with standard deviation errorbars.

4.4.1 2D Conceptual Demonstrations

To provide an initial demonstration of our method and the limitations of training set

prediction diversity, we present several sets of 2D synthetic examples in Figure 4.1. These

2D examples are constructed to have data distributions that satisfy our assumption that

Ne(x) ⇡ Be(x) locally around almost all of the points, but nevertheless contain significant

gaps. These gaps result in the possibility of learning multiple classifiers that have perfect

accuracy on the training set but behave differently when extrapolating. Indeed, in all of

these examples, if we have just two classifiers, they can completely agree on training and
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completely disagree in the extrapolation regions.

Figure 4.1: 2D synthetic datasets with gaps. We argue that “diverse” ensemble methods applied to these
datasets should produce accurate models with different decision boundaries.

Figure 4.2: Comparison of local independence training, random restarts and NCL on toy 2D datasets. For
each ensemble, the first model’s decision boundary is plotted in orange and the other in dashed blue. Both NCL
and LIT are capable of producing variation, but in qualitatively different ways.
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In Figure 4.2, we compare the neural network decision boundaries learned by random

restarts, local independence training, and negative correlation learning (NCL) on these

examples (we use NCL as a state-of-the-art example of an approach that defines diversity

with respect to training predictions). Starting with the top and bottom two rows (random

restarts and LIT), we find that random restarts give us essentially identical models, whereas

LIT outputs models with meaningfully different decision boundaries even at values of l

that are very low compared to its prediction loss term. This is in large part because on most

of these tasks (except Dataset 3), there is very little tradeoff to learning a near-orthogonal

boundary. At larger l, LIT outputs decision boundaries that are completely orthogonal (at

the cost of a slight accuracy reduction on Dataset 3).

NCL had more complicated behavior, in large part because of its built-in tradeoff between

accuracy and diversity. At low values of l (second from top), we found that NCL produced

models with identical decision boundaries, suggesting that training ignored the diversity

term. At l � 2, the predictive performance of one model fell to random guessing, suggesting

that training ignored the accuracy term. So in order to obtain meaningfully diverse but

accurate NCL models, we iteratively searched for the highest value of l at which NCL would

still return two models at least 90% accurate on the training set (by exponentially shrinking

a window between l = 1 and l = 2 for 10 iterations). What we found (middle row) is that

NCL learned to translate its decision boundaries within the support of the training data

(incurring an initially modest accuracy cost due to the geometry of the problem) but not

modify them outside the training support. Although this kind of diversity is not necessarily

bad (since the ensemble accuracy remains perfect), it is qualitatively different from the kind of

diversity encouraged by LIT—and only emerges at carefully chosen hyperparameter values.

The main takeaway from this set of synthetic examples is that methods that encourage

diverse extrapolation (like LIT) can produce significantly different ensembles than methods

that encourage diverse prediction (like NCL).

Note that the find-another-explanation of Section 3.3.2 would not work for any of these

conceptual examples; for Dataset 1, the initial model (i.e. either random restart model)
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learns to assign high importance to both features, so the second model is trained with an

A matrix of all ones (as in our sports car analogy at the beginning of this chapter; both

possible rules are equally important). On the remaining datasets, find-another-explanation

would be limited by its restriction that models must use different features, which does not

allow for the recovery of diverse decision boundaries that are not axis-aligned.

4.4.2 8D Feature Selection Example

Hearkening back to the sports car parable we discussed at the beginning of this chapter, in

Figure 4.3 we introduce an ambiguous 8-dimensional classification task where four non-

overlapping combinations of two features could separately be used to predict the class label

on the training set (where p(x) is a uniform distribution over the subset of the 8D hypercube

[�20, 20]8 where all four of those 2D functions can predict the right label simultaneously).

Our goal is both to see if LIT can recover these four 2D functions, and to investigate what

normally trained models (of varying model classes) learn.

To investigate these questions, we evaluate each model’s predictions over a test set with

p(x) set to a uniform distribution across the entirety of the 8D hypercube (which spans a

much larger volume). We compute both the average prediction projected down to a 2D grid

over each 2D subspace (Figure 4.4), as well as the accuracy of each model’s predictions if

each of the four different 2D functions were used to define the test set class labels (Test 1-4,

Table 4.1). If a model has learned only one of the four 2D functions, then exactly one of

its 2D test projections should look similar to the corresponding 2D train projections with

the rest random, and exactly one of its test set accuracies should be near 1.0 while the rest

should be near 0.5. If a model has learned a combination, then results should be mixed.

In general, we find that individually trained models learn a fairly complex combination

of all functions, and that this phenomenon holds true even for “interpretable” model

classes like logistic regression and decision trees. These results represent something like

the worst-case scenario we outlined in our discussion of the sports car story: the presence

of multiple simple implicit decision rules makes the actual function we learn much more
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Figure 4.3: Ambiguous classification task in 8 dimensions (scatterplots show data projected down to different
2D slices). On the training set, data is limited to a small subset of an 8-dimensional hypercube where any of
four possible 2D projections (x1,2, x3,4, x5,6, or x7,8) redundantly predicts the class label. However, models will
be evaluated over the entirety of the hypercube.

Table 4.1: Classification results on the 8D ambiguous dataset.

Model Train Test 1 Test 2 Test 3 Test 4
Logistic Regression 0.99 0.70 0.75 0.61 0.49

Decision Tree 1.00 0.57 0.77 0.54 0.57
Random Forest 1.00 0.67 0.72 0.56 0.50

Support Vector Machine 1.00 0.47 0.55 0.59 0.65
Neural Network 1.00 0.76 0.70 0.58 0.54

LIT Model 1 1.00 1.00 0.50 0.49 0.48
LIT Model 2 1.00 0.50 0.99 0.51 0.50
LIT Model 3 1.00 0.50 0.51 0.98 0.51
LIT Model 4 1.00 0.50 0.52 0.52 0.97

8D ambiguous classification accuracy results on task’s four test sets for five model classes, plus four-model LIT.
Suboptimal accuracies on all test sets (first five rows) imply these models learn a dense combination of almost
all functions, even for “interpretable” methods such as logistic regression and decision trees. LIT models, on
the other hand, are able to recover each function individually.

complicated. However, we see that local independence training recovers these underlying

simple functions, in this case by allocating each model separate features.

4.4.3 Classification Benchmarks

Next, we test our method on several standard binary classification datasets from the UCI

and MOA repositories [140, 28]. These are mushroom, ionosphere, sonar, spectf, and

electricity (with categorical features one-hot encoded, and all features z-scored). For

all datasets, we randomly select 80% of the dataset for training and 20% for test, then take

an additional 20% split of the training set to use for validation. In addition to random splits,
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Figure 4.4: 8D ambiguous classification results for normal MLPs (top row) vs. LIT models (bottom four
rows). In this case, local independence training outputs models sensitive to disjoint sets of features, which are
each arguably simpler to understand than the 8D function learned by a normally trained neural network.

Table 4.2: Ensemble results on UCI benchmarks.

Random Split

Ens. Mushroom Ionosphere Sonar SPECTF Electricity
AUC rav rcos2 AUC rav rcos2 AUC rav rcos2 AUC rav rcos2 AUC rav rcos2

RRs 1.0 1±.1 .9±0 .95±.03 .9±.1 1±0 .91±.06 .9±.1 1±0 .80±.06 .9±.1 1±0 .87±.00 1±0 1±0
Bag 1.0 1±0 .9±0 .96±.02 .7±.1 .5±.1 .90±.06 .5±.2 .5±.1 .80±.05 .6±.1 .4±.1 .87±.00 .9±0 1±0
Ada 1.0 — — .95±.03 — — .91±.06 — — .80±.06 — — .88±.00 .2±0 .2±.1
NCL 1.0 1±0 .8±0 .96±.04 .6±.5 .7±.3 .91±.06 .6±.5 .7±.4 .80±.07 .6±.5 .7±.3 .87±.00 .4±.1 .6±0
ACE 1.0 1±0 .9±0 .94±.04 .8±.3 .9±.2 .90±.06 .9±.2 1±.1 .79±.06 .8±.4 .9±.2 .87±.00 .9±0 1±0
LIT 1.0 .9±.1 0±0 .98±.01 .3±.1 0±0 .92±.05 .5±.2 0±0 .81±.06 .4±.1 0±0 .87±.00 .9±0 .3±.1

Extrapolation Split

Ens. Mushroom Ionosphere Sonar SPECTF Electricity
AUC rav rcos2 AUC rav rcos2 AUC rav rcos2 AUC rav rcos2 AUC rav rcos2

RRs .92±.00 .9±0 .8±0 .87±.02 1±0 1±0 .81±.02 1±0 1±0 .83±.05 1±0 1±0 .86±.00 1±0 1±0
Bag .91±.00 .9±0 .9±0 .89±.04 .6±.1 .5±.1 .82±.03 .7±.1 .6±0 .83±.05 .6±.1 .4±0 .86±.00 .9±0 .9±0
Ada .92±.01 — — .87±.02 — — .81±.03 — — .83±.05 — — .86±.00 .3±.1 .3±.2
NCL .94±.01 .6±.2 .6±.1 .90±.02 .8±.3 .9±.2 .78±.06 .5±.5 .6±.3 .81±.12 .5±.6 .7±.3 .86±.00 .9±.2 1±.1
ACE .92±.00 .9±0 .8±0 .90±.03 .3±.4 .5±.3 .77±.06 .6±.5 .7±.3 .72±.16 .5±.6 .7±.4 .86±.00 1±0 1±0
LIT .96±.01 .3±.1 0±0 .96±.02 .2±.1 0±0 .81±.03 .5±.1 0±0 .84±.05 .4±.1 0±0 .87±.00 .4±.2 0±0

Benchmark classification results in both the normal prediction task (top) and the extrapolation task (bottom)
over 10 reruns, with errorbars based on standard deviations and bolding based on standard error overlap.
On random splits, LIT offers modest AUC improvements over random restarts, on par with other ensemble
methods. On extrapolation splits, however, LIT tends to achieve higher AUC. In both cases, LIT almost always
exhibits low pairwise Pearson correlation between heldout model errors (rav), and for other methods, rav
roughly matches pairwise gradient cosine similarity (rcos2 ).
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Figure 4.5: For models not trained to minimize it, the average gradient cosine similarity rcos2 actually
predicts rav, the correlation of model errors on the test set, even though rcos2 is calculated without looking at
the test set labels (results across all UCI datasets and many regularization strengths).

we also introduce an extrapolation task, where instead of splitting datasets randomly, we

train on the 50% of points closest to the origin (i.e. where ||x||2 is less than its median value)

and validate/test on the remaining points (which are furthest from the origin). This test is

meant to evaluate robustness to covariate shift.

For each ensemble, we measure heldout AUC and accuracy, our diversity metric

CosIndepErr (abbreviated as rcos2), and several classic diversity metrics (rav, Qav, and

k) defined by Kuncheva and Whitaker [2003]. Table 4.2 compares heldout AUC, rav, and

rcos2 after cross-validating l and the ensemble size. More complete enumerations of AUC,

accuracy, and diversity metrics are shown in Figures B.4 and B.5. In general, we find that

LIT is competitive on random splits, strongest on extrapolation, and significantly improves

heldout prediction diversity across the board. We also find that rcos2 is meaningfully related

to other diversity metrics for all models that do not optimize for it (Figure 4.5).

4.4.4 ICU Mortality Case Study

As a final set of experiments, we run a more in-depth case study on a real world clinical

application. In particular, we predict in-hospital mortality for a cohort of n = 1, 053, 490
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patient visits extracted from the MIMIC-III database [103] based on on labs, vital signs, and

basic demographics. We follow the same cohort selection and feature selection process as

Ghassemi et al. [2017]. In addition to this full cohort, we also test on a limited data task

where we restrict the size of the training set to n = 1000 to measure robustness.

We visualize the results of these experiments in several ways to help tease out the effects

of l, ensemble size, and dataset size on individual and ensemble predictive performance,

diversity, and model explanations. Table 4.3 shows overall performance and diversity

metrics for these two tasks after cross-validation, along with the most common values of

l and ensemble size selected for each method. Drilling into the n = 1000 results, Figure

4.6 visualizes how multiple metrics for performance (AUC and accuracy) and diversity (rav

and rcos2) change with l, while Figure 4.7 visualizes the relationship between optimal l

and ensemble size.

Figure 4.8 (as well as Figures B.2 and B.3) visualize changes in the marginal distributions

of input gradients for each model in their explanatory sense [19]. As a qualitative evaluation,

we discussed these explanation differences with two intensive care unit clinicians and found

that LIT revealed meaningful redundancies in which combinations of features encoded

different underlying conditions.

4.5 Discussion

LIT matches or outperforms other methods, especially under data limits or covariate

shift. On the UCI datasets under train
d
⇡ test conditions (random splits), LIT always offers

at least modest improvements over random restarts, and often outperforms other baselines.

Under extrapolation splits, LIT tends to do significantly better. This pattern repeats itself on

the normal vs. data-limited versions of ICU mortality prediction task. We hypothesize that

on small or selectively restricted datasets, there is typically more predictive ambiguity, which

hurts the generalization of normally trained ensembles (who consistently make similar

guesses on unseen data). LIT is more robust to these issues.
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Table 4.3: Ensemble results on ICU mortality prediction tasks.

ICU Mortality Task, Full Dataset (n > 106)
Method AUC rav rcos2 # l

RRs .750±.000 .9±0 .9±0 13 —
Bag .751±.000 .9±0 .9±0 8 —
Ada .752±.003 0±0 0±0 8 —
ACE .750±.000 .9±0 .9±0 13 100.33

NCL .753±.001 .3±.2 .2±.2 13 100.00

LIT .750±.001 .8±0 .3±0 3 10�4.00

ICU Mortality Task, Limited Slice (n = 103)
Method AUC rav rcos2 # l

RRs .684±.001 .8±0 .8±0 8 —
Bag .690±.002 .5±0 .3±0 8 —
Ada .678±.003 .6±0 .5±0 2 —
ACE .684±.001 .8±0 .8±0 2 10�2.67

NCL .697±.006 .2±.4 .6±.2 13 100.33

LIT .711±.001 .1±0 0±0 13 10�2.33

Quantitative results on the ICU mortality prediction task, where # and l signify the most commonly selected
values of ensemble size and regularization parameter chosen for each method. On the full data task, although
all methods perform similarly, NCL and AdaBoost edge out slightly, and LIT consistently selects its weakest
regularization parameter. On the limited data task, LIT significantly outperforms baselines, with NCL and
Bagging in second, ACE indistinguishable from restarts, and significantly worse performance for AdaBoost
(which overfits).

Gradient cosine similarity can be a meaningful diversity metric. In Table 4.2, Figure 4.5,

as well as our more complete results in Figure B.5, we saw that for non-LIT methods,

gradient similarity rcos2 (which does not require labels to compute) was often similar in

value to error correlation rav (as well as the interrater agreement k, or Yule’s Q-statistic

Qav after a monotonic transformation—all measures which do require labels to compute).

One potential explanation for this correspondence is that, by our analysis at the end of

Section 4.3.2, rcos2 can literally be interpreted as an average squared correlation (between

changes in model predictions over infinitesimal Gaussian perturbations away from each

input). We hypothesize that rcos2 may be a useful quantity independently of LIT.

LIT is less sensitive to hyperparameters than baselines, but ensemble size matters more.

In both our synthetic examples (Figure 4.2) and our ICU mortality results (Figures 4.6
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Figure 4.6: Changes in individual AUC/accuracy and ensemble diversity with l for two-model ensembles on
the ICU mortality dataset (averaged across 10 reruns, error-bars omitted for clarity). For NCL and ACE, there
is a wide low-l regime where they are indistinguishable from random restarts. This is followed by a very brief
window of meaningful diversity (around l = 1 for NCL, slightly lower for ACE), after which both methods
output pairs of models which always predict 0 and 1 (respectively), as shown by the error correlation dropping
to -1. LIT, on the other hand, exhibits smooth drops in individual model predictive performance, with error
correlation falling towards 0. Results for other ensemble sizes were qualitatively similar.

and 4.7), we found that LIT produced qualitatively similar (diverse) results over several

orders of magnitude of l. NCL, on the other hand, required careful tuning of l to achieve

meaningful diversity (before its performance plummeted). In line with the results from

our synthetic examples, we believe this difference stems from the fact that NCL’s diversity

term is formulated as a direct tradeoff with individual model accuracy, so the balance

must be precise, whereas LIT’s diversity term can theoretically be completely independent

of individual model accuracy (which is true by construction in the synthetic examples).

However, datasets only have the capacity to support a limited number of (mostly or

completely) locally independent models. On the synthetic datasets, this capacity was exactly

2, but on real data, it is generally unknown, and it may be possible to achieve similar
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Figure 4.7: Another exploration of the effect of ensemble size and l on ICU mortality predictions. In particular,
we find that for LIT on this dataset, the optimal value of l depends on the ensemble size in a roughly log-linear
relationship. Because D-dimensional datasets can support a maximum of D locally independent models (and
only one model if the data completely determines the decision boundary), it is intuitive that there should be an
optimal value. For NCL, we also observe an optimal value near 100.33, but with a less clear relationship to
ensemble size and very steep dropoff to random guessing at slightly higher l.

results either with a small fully independent ensemble or a large partially independent

ensemble. For example, in Figure 4.7, we show that we can achieve similar improvements to

ICU mortality prediction with 2 highly independent (l = 100) models or 13 more weakly

independent (l = 10�2.33) models. We hypothesize that the trend-line of optimal LIT

ensemble size and l may be a useful tool for characterizing the amount of ambiguity

present in a dataset.

Interpretation of individual LIT models can yield useful dataset insights. In Figure 4.8,

we found that in discussions with ICU clinicians, mortality feature assocations for normally

trained neural networks were somewhat confusing due to hidden collinearities. As in our

synthetic 8D example, LIT models made more clinical sense individually, and the differences

between them helped reveal those collinearities (in particular between elevated levels of

blood urea nitrogen and creatinine). Because LIT ensembles are often optimal when small,
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Figure 4.8: Differences in cross-patient gradient distributions of ICU mortality prediction models for random
restart and locally independent ensembles (similar plots for other methods are shown in Figure B.3). Features
with mass consistently above the x-axis have positive associations with predicted mortality (increasing them
increases predicted mortality) while those with mass consistently below the x-axis have negative associations
(decreasing them increases predicted mortality). Distance from the x-axis corresponds to the association
strength. Models trained normally (top) consistently learn positive associations with age and bun (blood
urea nitrogen; larger values indicate kidney failure) and negative associations with weight and urine
(low weight is correlated with mortality; low urine output also indicates kidney failure or internal bleeding).
However, they also learn somewhat negative associations with creatinine, which confused clinicians
because high values are another indicator of kidney failure. When we trained LIT models, however, we found
that creatinine regained its positive association with mortality (in model 2), while the other main features
were more or less divided up. This collinearity between creatinine and bun/urine in indicating organ
problems (and revealed by LIT) was one of the main insights derived in our qualitative evaluation with ICU
clinicians.

and because individual LIT models are not required to sacrifice accuracy for diversity, they

may enable different and more useful kinds of data interpretation than other ensemble

methods.

Limitations. LIT does come with restrictions and limitations. In particular, we found that

it works well for rectifier activations (e.g. ReLU and softplus3) but leads to inconsistent

behavior with others (e.g. sigmoid and tanh). This may be related to the linear rather than

3Although we used ReLU in our quantitative experiments, we found more consistent behavior in synthetic
examples with softplus, perhaps due to its many-times differentiability.
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saturating extrapolation behavior of rectifiers. Because it relies on cosine similarity, LIT is

also sensitive to relative changes in feature scaling; however, in practice this issue can be

resolved by standardizing variables first.

Additionally, our cosine similarity approximation in LIT makes the assumption that

the data manifold is locally similar to RD near most inputs. However, we introduce

generalizations in Section B.1 to handle situations where this is not approximately true

(such as with image data).

Finally, LIT requires computing a second derivative (the derivative of the penalty) during

the optimization process, which increases memory usage and training time; in practice, LIT

took approximately 1.5x as long as random restarts, while NCL took approximately half the

time. However, significant progress is being made on making higher-order autodifferentia-

tion more efficient [27], so we can expect improvements. Also, in cases where LIT achieves

high accuracy with a comparatively small ensemble size (e.g. ICU mortality prediction),

overall training time can remain short if cross-validation terminates early.

4.6 Conclusion

In this paper, we presented a novel diversity metric that formalizes the notion of difference

in local extrapolations. Based on this metric we defined an ensemble method, local inde-

pendence training, for building ensembles of highly predictive base models that generalize

differently outside the training set. On datasets we knew supported multiple diverse de-

cision boundaries, we demonstrated our method’s ability to recover them. On real-world

datasets with unknown levels of redundancy, we demonstrated that LIT ensembles perform

competitively on traditional prediction tasks and were more robust to data scarcity and

covariate shift (as measured by training on inliers and testing on outliers). Finally, in our

case study on a clinical prediction task in the intensive care unit, we provided evidence

that the extrapolation diversity exhibited by LIT ensembles improved data robustness and

helped us reach meaningful clinical insights in conversations with clinicians. Together, these

results suggest that extrapolation diversity may be an important quantity for ensemble
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algorithms to measure and optimize.

There are ample directions for future improvements. For example, it would be useful

to consider methods for aggregating predictions of LIT ensembles using a more complex

mechanism, such as a mixture-of-experts model. Along similar lines, combining pairwise

IndepErrs in more informed way, such as a determinantal point process penalty [121] over

the matrix of model similarities, may help us better quantify the diversity of the ensemble.

Another interesting extension of our work would be to prediction tasks in semi-supervised

settings, since labels are generally not required for computing local independence error.

Finally, as we observe in the Section 4.5, some datasets seem to support a particular number

of locally independent models. It is worth exploring how to connect this property to

attempts to formally quantify and characterize the complexity or ambiguity present in a

prediction task [148, 203, 156].
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Chapter 5

Improving the Adversarial

Robustness and Interpretability of

Deep Neural Networks by

Regularizing their Input Gradients1

5.1 Introduction

In the previous two chapters, we used input gradient penalties to encourage neural networks

to make predictions for specific or different reasons. We demonstrated this on ambiguous,

extrapolated, or “decoy” datasets deliberately designed to deceive models making decisions

for different reasons. This philosophy of testing—that we should measure generalization by

testing on a different distribution than the one we trained on—can be taken to its extreme by

testing models in an adversarial setting, where neural networks have known vulnerabilities

[224]. In this chapter, we consider whether a knowledge-agnostic application of explanation

1This chapter is based on Andrew Ross and Finale Doshi-Velez. Improving the adversarial robustness and
interpretability of deep neural networks by regularizing their input gradients. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.
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regularization (a uniform L2 penalty on input gradients, analogous to Ridge regression on

the model’s local linear approximations) could help defend against adversarial examples.

Adversarial examples pose serious obstacles for the adoption of neural networks in

settings which are security-sensitive or have legal ramifications [105]. Although many

techniques for generating these examples (which we call “attacks”) require access to model

parameters, Papernot et al. [2017] have shown that it is possible and even practical to

attack black-box models in the real world, in large part because of transferability; examples

generated to fool one model tend to fool all models trained on the same dataset. Particularly

for images, these adversarial examples can be constructed to fool models across a variety

of scales and perspectives [15], which poses a problem for the adoption of deep learning

models in systems like self-driving cars.

Although there has recently been a great deal of research in adversarial defenses, many

of these methods have struggled to achieve robustness to transferred adversarial examples

[225]. Some of the most effective defenses simply detect and reject them rather than

making predictions [238]. When the paper this chapter is based on was originally written,

the most common, “brute force” solution was adversarial training, where we include a

mixture of normal and adversarial examples in the training set [126]. However, Tramèr

et al. [2018] showed that the robustness provided by initial forms of adversarial training can

be circumvented by randomizing or transferring perturbations from other models (though

ensembling helps). As an important note, subsequent work (now as of 2021, the date of this

dissertation) has shown that adversarial training actually can be made much more effective

with a “strong” adversary—that is, if we spend much more computational effort generating

worst-case adversarial examples at each training step. We will discuss this approach and

follow-up work at the end of this chapter.

As we noted in Chapter 3, domain experts are also often concerned that DNN predictions

are uninterpretable. The lack of interpretability is particularly problematic in domains where

algorithmic bias is often a factor [11] or in medical contexts where safety risks can arise

when there is mismatch between how a model is trained and used [39]. For computer vision
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models (the primary target of adversarial attacks), the most common class of explanation is

the saliency map, either at the level of raw pixels, grid chunks, or superpixels [183].

The local linear approximation provided by raw input gradients [19] is sometimes used

for pixel-level saliency maps [211]. However, computer vision practitioners tend not to

examine raw input gradients because they are noisy and difficult to interpret. This issue

has spurred the development of techniques like integrated gradients [222] and SmoothGrad

[216] that generate smoother, more interpretable saliency maps from noisy gradients. The

rationale behind these techniques is that, while the local behavior of the model may be noisy,

examining the gradients over larger length scales in input space provides a better intution

about the model’s behavior.

However, raw input gradients are exactly what many attacks use to generate adversarial

examples. Explanation techniques which smooth out gradients in background pixels may

be inappropriately hiding the fact that the model is quite sensitive to them. We consider

that perhaps the need for these smoothing techniques in the first place is indicative of a

problem with our models, related to their adversarial vulnerability and capacity to overfit.

Perhaps it is fundamentally hard for adversarially vulnerable models to be interpretable.

On the other hand, perhaps it is hard for interpretable models to be adversarially

vulnerable. Our hypothesis is that by training a model to have smooth input gradients

with fewer extreme values, it will not only be more interpretable but also more resistant

to adversarial examples. In the experiments that follow we confirm this hypothesis using

uniform gradient regularization, which optimizes the model to have smooth input gradients

with respect to its predictions during training. Using this technique, we demonstrate

robustness to adversarial examples across multiple model architectures and datasets, and in

particular demonstrate robustness to transferred adversarial examples: gradient-regularized

models maintain significantly higher accuracy on examples generated to fool other models

than baselines. Furthermore, both qualitatively and in human subject experiments, we find

that adversarial examples generated to fool gradient-regularized models are, in a particular

sense, more “interpretable”: they fool humans as well.

61



5.2 Related Work

In this section, we will (re)introduce notation, and give a brief overview of the baseline

attacks and defenses against which we will test and compare our methods. The methods

we will analyze again apply to all differentiable classification models fq(X), which are

functions parameterized by q that return predictions ŷ 2 RN⇥K given inputs X 2 RN⇥D.

These predictions indicate the probabilities that each of N inputs in D dimensions belong

to each of K class labels. To train these models, we try to find sets of parameters q⇤ that

minimize the total information distance between the predictions ŷ and the true labels y (also

2 RN⇥K, one-hot encoded) on a training set:

q⇤ = arg min
q

N

Â
n=1

K

Â
k=1

�ynk log fq(Xn)k, (5.1)

which we will sometimes write as

arg min
q

H(y, ŷ),

with H giving the sum of the cross entropies between the predictions and the labels.

5.2.1 Attacks

Fast Gradient Sign Method (FGSM)

Goodfellow et al. [2014] introduced this first method of generating adversarial examples

by perturbing inputs in a manner that increases the local linear approximation of the loss

function:

XFGSM = X + e sign (rx H(y, ŷ)) (5.2)

If e is small, these adversarial examples are indistinguishable from normal examples to a

human, but the network performs significantly worse on them.

Kurakin et al. [2016] noted that one can iteratively perform this attack with a small e to

induce misclassifications with a smaller total perturbation (by following the nonlinear loss

function in a series of small linear steps rather than one large linear step).
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Targeted Gradient Sign Method (TGSM)

A simple modification of the Fast Gradient Sign Method is the Targeted Gradient Sign

Method, introduced by Kurakin et al. [2016]. In the TGSM, we try to decrease a modified

version of the loss function that encourages the model to misclassify in a specific way:

XTGSM = X � e sign
�
rx H(ytarget, ŷ)

�
, (5.3)

where ytarget encodes an alternate set of labels we would like the model to predict instead.

In the digit classification experiments below, we often picked targets by incrementing the

labels y by 1 (modulo 10), which we will refer to as y+1. The TGSM can also be performed

iteratively.

Jacobian-based Saliency Map Approach (JSMA)

The final attack we consider, the Jacobian-based Saliency Map Approach (JSMA), also takes

an adversarial target vector ytarget. It iteratively searches for pixels or pairs of pixels in X to

change such that the probability of the target label is increased and the probability of all

other labels are decreased. This method is notable for producing examples that have only

been changed in several dimensions, which can be hard for humans to detect. For a full

description of the attack, we refer the reader to Papernot et al. [2016].

Newer Attacks

Since Ross et al. [2018] was published, stronger attacks have been developed. Many are based

on the iterated FGSM, but with a projection step, so that adversarial examples remain within

an e-ball of the original input. For example, Madry et al. [2017] apply projected 20-step

gradient descent (modern works often use 50 or 100 steps), and also start the optimization

with a random perturbation away from the original input to handle non-convexity. Chen

et al. [2018] solve an inner elastic net optimization problem which weights increasing the

loss against the perturbation size. These approaches require significantly more computation

but are significantly more effective.
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5.2.2 Defenses

As baseline defenses, we consider defensive distillation and one-step adversarial training.

To simplify comparison, we omit defenses [238, 165] that are not fully architecture-agnostic

or which work by detecting and rejecting adversarial examples.

Distillation

Distillation, originally introduced by Ba and Caruana [2014], was first examined as a

potential defense by Papernot et al. [2016]. The main idea is that we train the model twice,

initially using the one-hot ground truth labels but ultimately using the initial model’s

softmax probability outputs, which contain additional information about the problem. Since

the normal softmax function tends to converge very quickly to one-hot-ness, we divide

all of the logit network outputs (which we will call ẑk instead of the probabilities ŷk) by a

temperature T (during training but not evaluation):

fT,q(Xn)k =
eẑk(Xn)/T

ÂK
i=1 eẑi(Xn)/T

, (5.4)

where we use fT,q to denote a network ending in a softmax with temperature T. Note that

as T approaches •, the predictions converge to 1
K . The full process can be expressed as

q0 = arg min
q

N

Â
n=1

K

Â
k=1

�ynk log fT,q(Xn)k,

q⇤ = arg min
q

N

Â
n=1

K

Â
k=1

� fT,q0(Xn)k log fT,q(Xn)k.

(5.5)

Distillation is usually used to help small networks achieve the same accuracy as larger

DNNs, but in a defensive context, we use the same model twice. It has been shown to be

an effective defense against white-box FGSM attacks, but Carlini and Wagner [2016] have

shown that it is not robust to all kinds of attacks. We will see that the precise way it defends

against certain attacks is qualitatively different than gradient regularization, and that it can

actually make the models more vulnerable to attacks than an undefended model.
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Adversarial Training

In adversarial training [126], we increase robustness by injecting adversarial examples into

the training procedure. We follow the method implemented in Papernot et al. [2016], where

we augment the network to run the single-step FGSM on the training batches and compute

the model’s loss function as the average of its loss on normal and adversarial examples

without allowing gradients to propogate so as to weaken the FGSM attack (which would

also make the method second-order). We compute FGSM perturbations with respect to

predicted rather than true labels to prevent “label leaking,” where our model learns to

classify adversarial examples more accurately than regular examples.

Stronger Adversarial Training

A more modern approach to adversarial training is to augment the network to run multi-step

FGSM or projected gradient descent on each example during each training iteration, per

the developments in Section 5.2.1. Although we do not test this approach in this chapter,

this approach has been shown to be more effective than one-step adversarial training and

produces models whose qualitative behavior is actually more similar to those obtained by

gradient regularization, which we will now define. We discuss strong adversarial training

more at the end of this chapter.

5.3 Method

We defined our “right for the right reasons” objective in Chapter 3 using an L2 penalty

on the gradient of the model’s predictions across classes with respect to input features

marked irrelevant by domain experts. We encoded their domain knowledge using an

annotation matrix A. If we set A = 1, however, and consider only the log-probabilities of

the predicted classes, we recover what Drucker and Le Cun [1992] introduced as “double

backpropagation”, which trains neural networks by minimizing not just the “energy” of the

network but the rate of change of that energy with respect to the input features. In their
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formulation the energy is a quadratic loss, but we can reformulate it almost equivalently

using the cross-entropy:

q⇤ = arg min
q

N

Â
n=1

K

Â
k=1

�ynk log fq(Xn)k + l
D

Â
d=1

N

Â
n=1

 
∂

∂xd

K

Â
k=1

�ynk log fq(Xn)k

!2

, (5.6)

whose objective we can write a bit more concisely as

arg min
q

H(y, ŷ) + l||rx H(y, ŷ)||22,

where l is again a hyperparameter specifying the penalty strength. The intuitive objective

of this function is to ensure that if any input changes slightly, the divergence between the

predictions and the labels will not change significantly (though including this term does not

guarantee Lipschitz continuity everywhere). Double backpropagation was mentioned as

a potential adversarial defense in the same paper which introduced defensive distillation

[174], but at publish time, its effectiveness in this respect had not yet been analyzed in the

literature – though [83] previously and [91, 53] concurrently consider related objectives,

and [180] derive and minimize an upper bound on adversarial vulnerability based on the

maximum gradient norm in a ball around each training input. These works also provide

stronger theoretical explanations for why input gradient regularization is effective, though

they do not analyze its relationship to model interpretability. In this work, we interpret

gradient regularization as a quadratic penalty on our model’s saliency map.

5.4 Experiments

Datasets and Models

We evaluated the robustness of distillation, adversarial training, and gradient regularization

to the FGSM, TGSM, and JSMA on MNIST [132], Street-View House Numbers (SVHN)

[166], and notMNIST [36]. On all datasets, we test a simple convolutional neural network

with 5x5x32 and 5x5x64 convolutional layers followed by 2x2 max pooling and a 1024-unit

fully connected layer, with batch-normalization after all convolutions and both batch-
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normalization and dropout on the fully-connected layer. All models were implemented

in Tensorflow and trained using Adam [112] with a = 0.0002 and e = 10�4 for 15000

minibatches of size of 256. For SVHN, we prepare training and validation set as described

in Sermanet et al. [2012], converting the images to grayscale following Grundland and

Dodgson [2007] and applying both global and local contrast normalization.

Attacks and Defenses

Figure 5.1: Accuracy of all CNNs on FGSM examples generated to fool undefended models, defensively
distilled, adversarially trained, and gradient regularized models (from left to right) on MNIST, SVHN,
and notMNIST (from top to bottom). Gradient-regularized models are the most resistant to other models’
adversarial examples at high e, while all models are fooled by gradient-regularized model examples. On MNIST
and notMNIST, distilled model examples are usually identical to non-adversarial examples (due to gradient
underflow), so they fail to fool any of the other models.

For adversarial training and JSMA example generation, we used the Cleverhans adver-

sarial example library [172]. For distillation, we used a softmax temperature of T = 50, and

for adversarial training, we trained with FGSM perturbations at e = 0.3, averaging normal

and adversarial losses. For gradient regularized models, we use double backpropagation,

which provided the best robustness, and train over a spread of l values. We choose the l

with the highest accuracy against validation black-box FGSM examples but which is still at
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Figure 5.2: Applying both gradient regularization and adversarial training (“both defenses”) allows us to
obtain maximal robustness to white-box and normal black-box attacks on SVHN (with a very slight label-
leaking effect on the FGSM, perhaps due to the inclusion of the rx H(y, ŷ) term). However, no models are able
to maintain robustness to black-box attacks using gradient regularization.

least 97% as accurate on normal validation examples (though accuracy on normal examples

tended not to be significantly different). Code for all models and experiments has been

open-sourced2.

Evaluation Metrics

For the FGSM and TGSM, we test all models against adversarial examples generated for each

model and report accuracy. Testing this way allows us to simultaneously measure white-

and black-box robustness.

On the JSMA and iterated TGSM, we found that measuring accuracy was no longer a

good evaluation metric, since for our gradient-regularized models, the generated adversarial

examples often resembled their targets more than their original labels. To investigate this,

we performed a human subject experiment to evaluate the legitimacy of adversarial example

misclassifications.

2
https://github.com/dtak/adversarial-robustness-public
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5.4.1 Accuracy Evaluations (FGSM and TGSM)

FGSM Robustness

Figure 5.1 shows the results of our defenses’ robustness to the FGSM on MNIST, SVHN,

and notMNIST for our CNN at a variety of perturbation strengths e. Consistently across

datasets, we find that gradient-regularized models exhibit strong robustness to black-box

transferred FGSM attacks (examples produced by attacking other models). Although

adversarial training sometimes performs slightly better at e  0.3, the value we used in

training, gradient regularization generally surpasses it at higher e (see the green curves in

the leftmost plots).

The story with white-box attacks is more interesting. Gradient-regularized models

are generally more robust to than undefended models (visually, the green curves in the

rightmost plots fall more slowly than the blue curves in the leftmost plots). However,

accuracy still eventually falls for them, and it does so faster than for adversarial training.

Even though their robustness to white-box attacks seems lower, though, the examples

produced by those white-box attacks actually fool all other models equally well. This

effect is particularly pronounced on SVHN. In this respect, gradient regularization may

hold promise not just as a defense but as an attack, if examples generated to fool them are

inherently more transferable.

Models trained with defensive distillation in general perform no better and often

worse than undefended models. Remarkably, except on SVHN, attacks against distilled

models actually fail to fool all models. Closer inspection of distilled model gradients and

examples themselves reveals that this occurs because distilled FGSM gradients vanish – so

the examples are not perturbed at all. As soon as we obtain a nonzero perturbation from a

different model, distillation’s appearance of robustness vanishes as well.

Although one-step adversarial training and gradient regularization seem comparable in

terms of accuracy, they work for different reasons and can be applied in concert to increase

robustness, which we show in Figure 5.2. In Figure 5.3 we also show that, on normal

and one-step adversarially trained black-box FGSM attacks, models trained with these two
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defenses are fooled by different sets of adversarial examples. We provide intuition for why

this might be the case in Figure 5.4.

Figure 5.3: Venn diagrams showing overlap in which MNIST e = 0.4 FGSM examples, generated for normal,
one-step adversarially trained, and gradient regularized models, fool all three. Undefended models tend to be
fooled by examples from all models, while the sets of one-step adversarially trained model FGSM examples that
fool the two defended models are closer to disjoint. Gradient-regularized model FGSM examples fool all models.
These results suggest that ensembling different forms of defense may be effective in defending against black box
attacks (unless those black box attacks use a gradient-regularized proxy).

TGSM Robustness

Against the TGSM attack (Figure 5.5), defensively distilled model gradients no longer

vanish, and accordingly these models start to show the same vulnerability to adversarial

attacks as others. Gradient-regularized models still exhibit the same robustness even at

large perturbations e, and again, examples generated to fool them fool other models equally

well.

One way to better understand the differences between gradient-regularized, normal, and

distilled models is to examine the log probabilities they output and the norms of their loss

function input gradients, whose distributions we show in Figure 5.6 for MNIST. We can see

that the different defenses have very different statistics. Probabilities of non-predicted classes

tend to be small but remain nonzero for gradient-regularized models, while they vanish

on defensively distilled models evaluated at T = 0 (despite distillation’s stated purpose

of discouraging certainty). Perhaps because r log p(x) = 1
p(x)rp(x), defensively distilled
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Figure 5.4: Conceptual illustration of the difference between gradient regularization and gradient masking. In
(idealized) gradient masking, input gradients are completely uninformative, so following them doesn’t affect
either the masked model’s predictions or those of any other model. In gradient regularization, gradients actually
become more informative, so following them will ultimately fool all models. However, because gradients are also
smaller, perturbations need to be larger to flip predictions. Unregularized, unmasked models are somewhere in
between. We see quantitative support for this interpretation in Figure 5.3, as well as qualitative evidence in
Figure 5.9.

models’ non-predicted log probability input gradients are the largest by many orders of

magnitude, while gradient-regularized models’ remain controlled, with much smaller means

and variances. The other models lie between these two extremes. While we do not have a

strong theoretical argument about what input gradient magnitudes should be, we believe

it makes intuitive sense that having less variable, well-behaved, and non-vanishing input

gradients should be associated with robustness to attacks that consist of small perturbations

in input space.
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Figure 5.5: CNN accuracy on y+1 TGSM examples generated to fool the four models on three datasets
(see Figure 5.1 for more explanation). Gradient-regularized models again exhibit robustness to other models’
adversarial examples. Distilled model adversarial perturbations fool other models again since their input
gradients no longer underflow.

5.4.2 Human Subject Study (JSMA and Iterated TGSM)

Need for a Study

Accuracy scores against the JSMA can be misleading, since without a maximum distortion

constraint it necessarily runs until the model predicts the target. Even with such a constraint,

the perturbations it creates sometimes alter the examples so much that they no longer

resemble their original labels, and in some cases bear a greater resemblance to their targets.

Figure 5.7 shows JSMA examples on MNIST for gradient-regularized and distilled models

which attempt to convert 0s and 1s into every other digit. Although all of the perturbations

“succeed” in changing the model’s prediction, in the gradient-regularized case, many of the

JSMA examples strongly resemble their targets.

The same issues occur for other attack methods, particularly the iterated TGSM, for

which we show confusion matrices for different models and datasets in Figure 5.8. For the

gradient-regularized models, these psuedo-adversarial examples quickly become almost

prototypical examples of their targets, which is not reflected in accuracies with respect to
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Figure 5.6: Distributions of (L2 norm) magnitudes of FGSM input gradients (top), TGSM input gradients
(middle), and predicted log probabilities across all classes (bottom) for each defense. Note the logarithmic scales.
Gradient-regularized models tend to assign non-predicted classes higher probabilities, and the L2 norms of the
input gradients of their FGSM and TGSM loss function terms have similar orders of magnitude. Distilled
models (evaluated at T = 0) assign extremely small probabilities to all but the predicted class, and their TGSM
gradients explode while their FGSM gradients vanish (we set a minimum value of 10�20 to prevent underflow).
Normal and adversarially trained models lie somewhere in the middle.

Figure 5.7: Results of applying the JSMA to MNIST 0 and 1 images with maximum distortion parameter
g = 0.25 for a distilled model (left) and a gradient-regularized model (right). Examples in each row start out
as the highlighted digit but are modified until the model predicts the digit corresponding to their column or the
maximum distortion is reached.

the original labels.

To test these intuitions more rigorously, we ran a small pilot study with 11 subjects

to measure whether they found examples generated by these methods to be more or less

plausible instances of their targets.

Study Protocol

The pilot study consisted of a quantitative and qualitative portion. In the quantitative

portion, subjects were shown 30 images of MNIST JSMA or SVHN iterated TGSM examples.

Each of the 30 images corresponded to one original digit (from 0 to 9) and one model

(distilled, gradient-regularized, or undefended). Note that for this experiment, we used

rx H( 1
K , ŷ) gradient regularization, ran the TGSM for just 10 steps, and trained models for 4

epochs at a learning rate of 0.001. This procedure was sufficient to produce examples with
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Figure 5.8: Partial confusion matrices showing results of applying the iterated TGSM for 15 iterations at
e = 0.1. Each row is generated from the same example but modified to make the model to predict every other
class. TGSM examples generated for gradient-regularized models (right) resemble their targets more than their
original labels and may provide insight into what the model has learned. Animated versions of these examples
can be seen at http://goo.gl/q8ZM1T.

explanations similar to the longer training procedure used in our earlier experiments, and

actually increased the robustness of the undefended models (adversarial accuracy tends

to fall with training iteration). Images were chosen uniformly at random from a larger set

of 45 examples that corresponded to the first 5 images of the original digit in the test set

transformed using the JSMA or iterated TGSM to each of the other 9 digits (we ensured that

all models misclassified all examples as their target). Subjects were not given the original

label, but were asked to input what they considered the most and second-most plausible

predictions for the image that they thought a reasonable classifier would make (entering

N/A if they thought no label was a plausible choice). In the qualitative portion that came

afterwards, users were shown three 10x10 confusion matrices for the different defenses on

MNIST (Figure 5.7 shows the first two rows) and were asked to write comments about the

differences between the examples. Afterwards, there was a short group discussion. This

study was performed in compliance with the institution’s IRB.
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Table 5.1: Adversarial example user study results.

MNIST (JSMA) SVHN (TGSM)
Model human

fooled
mistake
reasonable

human
fooled

mistake
reasonable

normal 2.0% 26.0% 40.0% 63.3%
distilled 0.0% 23.5% 1.7% 25.4%

grad. reg. 16.4% 41.8% 46.3% 81.5%

Quantitative feedback from the human subject experiment. “human fooled” columns record what percentage
of examples were classified by humans as most plausibly their adversarial targets, and “mistake reasonable”
records how often humans either rated the target plausible or marked the image unrecognizable as any label
(N/A).

Study Results

Table 5.1 shows quantitative results from the human subject experiment. Overall, subjects

found gradient-regularized model adversarial examples most convincing. On SVHN and

especially MNIST, humans were most likely to think that gradient-regularized (rather

than distilled or normal) adversarial examples were best classified as their target rather

than their original digit. Additionally, when they did not consider the target the most

plausible label, they were most likely to consider gradient-regularized model mispredictions

“reasonable” (which we define in Table 5.1), and more likely to consider distilled model

mispredictions unreasonable. p-values for the differences between normal and gradient

regularized unreasonable error rates were 0.07 for MNIST and 0.08 for SVHN.

In the qualitative portion of the study (comparing MNIST JSMA examples), all of the

written responses described significant differences between the insensitive model’s JSMA

examples and those of the other two methods. Many of the examples for the gradient-

regularized model were described as “actually fairly convincing,” and that the normal

and distilled models “seem to be most easily fooled by adding spurious noise.” Few

commentators indicated any differences between the normal and distilled examples, with

several saying that “there doesn’t seem to be [a] stark difference” or that they “couldn’t
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describe the difference” between them. In the group discussion one subject remarked on

how the perturbations to the gradient-regularized model felt “more intentional”, and others

commented on how certain transitions between digits led to very plausible fakes while

others seemed inherently harder. Although the study was small, both its quantitative and

qualitative results support the claim that gradient regularization, at least for the two CNNs

on MNIST and SVHN, is a credible defense against the JSMA and the iterated TGSM, and

that distillation is not.

5.4.3 Connections to Interpretability

Figure 5.9: Input gradients rx H( 1
K , ŷ) that provide a local linear approximation of normal models (top),

distilled models at T = 50 (second from top), adversarially trained models (middle), and models trained with
rx H( 1

K , ŷ) and rx H(y, ŷ) gradient regularization (bottom two). Whitening black pixels or darkening white
pixels makes the model more certain of its prediction. In general, regularized model gradients appear smoother
and make more intuitive sense as local linear approximations.

Finally, we present a qualitative evaluation suggesting a connection between adversarial

robustness and interpretability. In the literature on explanations, input gradients are

frequently used as explanations [19], but sometimes they are noisy and not interpretable

on their own. In those cases, smoothing techniques have been developed [216, 209, 222] to

generate more interpretable explanations, but we have already argued that these techniques

may obscure information about the model’s sensitivity to background features.

We hypothesized that if the models had more interpretable input gradients without the

need for smoothing, then perhaps their adversarial examples, which are generated directly
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from their input gradients, would be more interpretable as well. That is, the adversarial

example would be more obviously transformative away from the original class label and

towards another. The results of the user study show that our gradient-regularized models

have this property; here we ask if the gradients are more interpretable as explanations.

In Figure 5.9 we visualize input gradients across models and datasets, and while we

cannot make any quantitative claims, there does appear to be a qualitative difference in the

interpretability of the input gradients between the gradient-regularized models (which were

relatively robust to adversarial examples) and the normal and distilled models (which were

vulnerable to them). One-step adversarially trained models seem to exhibit slightly more

interpretable gradients, but not nearly to the same degree as gradient-regularized models.

When we repeatedly apply input gradient-based perturbations using the iterated TGSM

(Figure 5.8), this difference in interpretability between models is greatly magnified, and the

results for gradient-regularized models seem to provide insight into what the model has

learned. When gradients become interpretable, adversarial images start resembling feature

visualizations [168]; in other words, they become explanations.

5.5 Discussion

In this chapter, we showed that:

• Gradient regularization slightly outperforms one-step adversarial training as a defense

against black-box transferred FGSM examples from undefended models.

• Gradient regularization significantly increases robustness to white-box attacks, though

not quite as much as adversarial training.

• Adversarial examples generated to fool gradient-regularized models are more “univer-

sal;” they are more effective at fooling all models than examples from unregularized

models.

• Adversarial examples generated to fool gradient-regularized models are more in-
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terpretable to humans, and examples generated from iterative attacks quickly come

to legitimately resemble their targets. This is not true for distillation or adversarial

training.

The conclusion that we would like to reach is that gradient-regularized models are right for

better reasons. Although they are not completely robust to attacks, their correct predictions

and their mistakes are both easier to understand. To fully test this assertion, we would

need to run a larger and more rigorous human subject evaluation that also tests adversarial

training and other attacks beyond the JSMA, FGSM, and TGSM.

Connecting what we have done back to the general idea of explanation regularization,

we saw in Equation 5.6 that we could interpret our defense as a quadratic penalty on our

CNN’s saliency map. Imposing this penalty had both quantitative and qualitative effects;

our gradients became smaller but also smoother with fewer high-frequency artifacts. Since

gradient saliency maps are just normals to the model’s decision surface, these changes

suggest a qualitative difference in the “reasons” behind our model’s predictions. Many

techniques for generating smooth, simple saliency maps for CNNs not based on raw

gradients have been shown to vary under meaningless transformations of the model [111] or,

more damningly, to remain invariant under extremely meaningful ones [4] – which suggests

that many of these methods either oversimplify or aren’t faithful to the models they are

explaining. Our approach in this chapter was, rather than simplifying our explanations

of fixed models, to optimize our models to have simpler explanations. Their increased

robustness can be thought of as a useful side effect.

Although the problem of adversarial robustness in deep neural networks is still very

much an open one, these results may suggest a deeper connection between it and inter-

pretability. No matter what method proves most effective in the general case, we suspect

that any progress towards ensuring either interpretability or adversarial robustness in deep

neural networks will likely represent progress towards both.
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5.5.1 Newer developments

In this chapter, we described both adversarial training and distillation as achieving “ro-

bustness” through gradient masking, which makes gradients less interpretable and (poten-

tially) makes models right for worse reasons. However, Tsipras et al. [2018] and Engstrom

et al. [2019] show that adversarial training against a much stronger adversary (many-step

projected gradient descent) actually makes gradients more human-interpretable in the same

way as gradient regularization.

Ilyas et al. [2019] explore this point further by showing that most image classification

problems commonly considered in the literature are ambiguous: they can be solved either

using low-frequency shape-based features (which are relatively easy for humans to interpret),

or using high-frequency features that are legitimately correlated with class labels, but which

most humans would not be able to comprehend. Strong adversarial training and gradient

regularization both encourage models to utilize the lower-frequency, more interpretable

features (rather than the high-frequency features, or a confusing combination of both).

In this sense, we can understand image classification problems in the same way as the

ambiguous synthetic datasets that we introduced in the first two chapters. There are two

potential classes of implicit decision rules that an accurate model could learn, one of which is

generally more interpretable (and robust) than the other. Normal gradient descent produces

models that use a complicated combination of both classes of rules. Gradient descent with

gradient or perturbation-based regularization reshapes the optimization landscape to favor

the interpretable class. This brings us back full circle to our parables in Chapter 1.
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Part III

Interpretable Representations
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Chapter 6

Background on Representations

6.1 Definitions and Related Work

The last three chapters have (hopefully) told a relatively coherent story: learning to predict

a set of class labels y from associated inputs x is usually ambiguous, which makes models

unnecessarily complex and vulnerable to distribution shifts, but we can mitigate these prob-

lems by encoding our domain knowledge in terms of input features, and then regularizing

their gradients (or other related quantities).

However, sometimes domain knowledge is difficult to express in terms of input features.

In real life, we often reason and explain in terms of concepts defined at varying levels of

abstraction, as Keil [2006] notes:

Explanations [...] suffer if presented at the wrong level of detail. Thus, if asked
why John got on the train from New Haven to New York, a good explanation
might be that he had tickets for a Broadway show. An accurate but poor
explanation at too low a level might say that he got on the train because he
moved his right foot from the platform to the train and then followed with his
left foot. An accurate but poor explanation at too high a level might say that he
got on the train because he believed that the train would take him to New York
from New Haven.

In other words, there is often a conceptual hierarchy of reasons behind any event, and user

knowledge might be specific to a certain level. Although it is possible that we could come
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closer to encoding certain types of conceptual knowledge if we also regularized feature

interactions [124, 228], input importance [116, 206], or input similarity [43], none of those

approaches seems to solve the problem in general. It would be extremely helpful (both

for explaining the reasons behind predictions and constraining them) if machine learning

models and their users could communicate in a common conceptual language, ideally one

that supports some notion of hierarchy. But that is a daunting task.

Concepts and Classifier Representations: However, it has long been noted that neural

networks, which consist of many layers of recursive “feature extractors,” actually operate

by extracting progressively more abstract features from low-level inputs [241]. In other

words, these vectors of “activations” at each hidden layer, often called embeddings or

representations, are structurally similar to the kind of conceptual hierarchies we seek,

though they may not always correspond in practice.

Several works have attempted to investigate whether and when they do. On classification

datasets whose labels can be hierarchically decomposed into sub-concepts, Bau et al. [2017]

find that different neural architectures and training methods lead to differing levels of

correspondence between representation components and concept hierarchies. Given small

datasets of examples of human concepts, Kim et al. [2017] test whether (and in what way)

those concepts are meaningfully extracted by classifier representations and important for

predictions, specifically by finding directions (called concept activation vectors, or CAVs)

that best represent each concept.

From an alternate angle, Olah et al. [2017] visualize what inputs maximally activate

representation dimensions (or combinations of them), so that human users can attempt

to associate those dimensions (or combinations of them) with concepts; this approach is

called feature visualization. Because the representations they consider are very large, Olah

et al. [2018] use non-negative matrix factorization (NMF) to find linear combinations that

best summarize the entire set, which are fewer in number and whose maximally-activating

inputs tend to be more human-interpretable. In a similar spirit, Ghorbani et al. [2019] use

image segmentation techniques to automatically discover CAVs that are influential to the
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network, which they demonstrate are also often meaningful to human users.

Both of these approaches (trying to map pre-labeled human concepts to network repre-

sentations, or inspecting unlabeled network representations and trying to map them back to

human concepts) can be very helpful for explaining classifiers at higher levels of abstraction.

If the network parameters responsible for generating the representations are fixed, they can

also be adapted to allow for concept regularization using the techniques of Chapter 3, but

with gradients taken with respect to concept-aligned representation directions (see Stammer

et al. [2020] for an excellent example).

However, there are many potential issues with relying on the representations learned by

standard classifiers. For one, it is possible that correspondences between human concepts

and model representations will be weak or nonexistent. If an image classifier comes to rely

exclusively on non-robust, high-frequency features in the sense of Ilyas et al. [2019], then its

representations will not truly correspond to concepts that mean anything to human users,

even if there remains some correlation. Additionally, even if we can identify a direction

in representation space that has a strong aggregate association with a concept (e.g. by

using a set of examples to learn a CAV, or by interpreting an example that maximizes a

linear combination of dimensions identified by NMF), it is unclear whether this direction

will continue to describe the concept at every point in space, because neural networks are

nonlinear. To make progress, we may need to explicitly learn representations which are

more interpretable, robust, or simply right.

Disentanglement and Generative Model Representations: The increasingly popular sub-

field of “disentangled representations” has much to say about what it means to learn the

right representation [184, 92, 46, 45, 145], which directly inspires the contributions of the

remaining chapters. Although we will leave most of our discussion (and criticism) of

specific disentanglement methods and metrics until later, the subfield is generally focused

on learning generative model representations that fully summarize the data (i.e. can be used
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to generate new data1), but in a way that disentangles different “independent” ground-truth

factors (that actually generated the data) into different representation dimensions (with

varying definitions of independence). Informally, representations obtained by such disen-

tangled representation learning methods are believed to be more interpretable than those

obtained by standard techniques.

However, this belief has not faced much rigorous testing, in large part because interpretability—

especially for representations—is difficult to quantify. Additionally, many disentangled

representation learning methods make very strong assumptions about the (lack of) under-

lying structure in the dataset, e.g. that the ground-truth factors behind the dataset are

statistically independent. However, many real-world generative processes contain highly

structured dependencies.

6.2 Outline of Part III

In the next two chapters of Part III, we work towards resolving some of these problems,

making the following contributions towards learning (or measuring if we have learned) the

right representation:

• In Chapter 7, we introduce (and rigorously test) an interactive technique for both

explaining representations and evaluating their interpretability. We use this tech-

nique to evaluate different interpretable representation learning methods and relate

disentanglement metrics to human factors.

• In Chapter 8, we help generalize the idea of disentanglement to representations

which are hierarchical in a novel sense: their dimensions are organized into a tree,

but only the dimensions along a particular path are active at any given time. This

structure allows us to learn explicit global structural models of our data while reducing

1Representation learning in generative modeling is distinct from representation learning in classification; if
a generative model is expressive enough to generate every instance x in the support of p(x), then it possible
to convert between x and its representation without losing any information. In contrast, in neural networks
trained for classification, each layer’s representation of x discards more and more information irrelevant to the
prediction task, so may be impossible to map backwards—though this is less true for robust classifiers [68]
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the number of local dimensions that users must simultaneously consider (without

sacrificing expressivity). We introduce benchmarks, algorithms, and metrics for this

kind of hierarchical disentanglement.
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Chapter 7

Evaluating the Interpretability of

Generative Models by Interactive

Reconstruction1

Before we can research methods to learn interpretable representations, we first need to

operationalize what we mean by representation interpretability. While it would be nice to

provide a simple, uncontroversial definition and measurement method in a few paragraphs,

it turns out this is actually a very difficult problem in its own right. As such, we devote an

entire chapter to the question, specifically for the case of generative models (with a focus on

autoencoders).

7.1 Introduction

Many have speculated that machine learning (ML) could unlock significant new insights

in science and medicine thanks to the increasing volume of digital data [87]. However,

much of this data is unlabeled, making it difficult to apply many traditional ML techniques.

1This chapter is based on Andrew Slavin Ross, Nina Chen, Elisa Zhao Hang, Elena L. Glassman, and Finale
Doshi-Velez. Evaluating the interpretability of generative models by interactive reconstruction. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems, 2021. doi: 10.1145/3411764.3445296.
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Generative modeling, a subfield of ML that does not require labels, promises to help by

distilling high dimensional input data into lower dimensional meaningful axes of variation,

which we call representations. To be most useful in “unlocking insights,” though, these

representations must be understood by human researchers.

Motivated by the need for human understanding, a burgeoning research area of inter-

pretable ML has emerged [60, 79]. While some of this work has used user studies to quantify

interpretability [100, 118, 178, 129], there have been concerns within the HCI community

that these studies do not generalize to more realistic use cases [34]. These studies are

also largely in the context of discriminative rather than generative modeling—even in the

few that consider representations [14]. Within generative modeling, ML researchers have

tried to quantify interpretability via measures of disentanglement, which measure how well

individual representation dimensions match ground-truth factors that generated the data

[184]. However, this work is not tested on actual human users, nor are disentanglement

measures computable without knowing ground-truth factors.

In this work, we develop a method for quantifying the interpretability of generative mod-

els by measuring how well users can interactively manipulate representations to reconstruct

target instances. To validate it, we use both MTurk and lab studies to determine whether

models known to be understandable a priori can be distinguished from those known to be

complex, and also whether our quantitative metrics match qualitative feedback from users.

We also investigate the relationship between our human-grounded interpretability measures

and synthetic disentanglement measures.

Our main contributions are as follows:

• A task for evaluating the interpretability of generative models, where users interac-

tively manipulate representation dimensions to reconstruct target instances.

• Large-scale experiments on Amazon Mechanical Turk and smaller-scale think-aloud

studies showing our task distinguishes entangled from disentangled models and that

performance is meaningfully related to human model understanding, as demonstrated

and reported by study participants.
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• Novel results suggesting that ML methods which improve disentanglement on syn-

thetic datasets also improve interpretability on real-world datasets.

7.2 Related Work

7.2.1 Human-Centered Interpretability Measures

While there have been criticisms that “interpretability” is ill-defined [142], several works

have focused on quantifying it, particularly for discriminative models [141, 60, 72, 1, 129, 8,

178, 214, 198, 100, 118]. Per Doshi-Velez and Kim [60] and Miller [161], these works typically

ground interpretability as the capacity of the model to be sufficiently understood in an

appropriate context, and operationalize it as a user’s ability to perform various tasks given

visualizations of a model according to some performance measures—where the tasks and

measures are presumed to be relevant to the desired context. They then study the effect of

varying visualizations or models on task performance measures.

As a concrete example, Kulesza et al. [122] present different visualizations of a random

forest [31] model, and as their task, ask users a series of questions in a thinkaloud-style

protocol [136]. Their performance measure is the difference between the number of accurate

and inaccurate statements about the model made by the user, which they compute by

transcribing interviews and individually categorizing each statement. As their theoretical

grounding, they draw on notions of understanding from Norman [167], who defines

understanding in terms of user mental model accuracy. They find that visualizations

produce more accurate mental models when complete (the whole truth) and sound (nothing

but the truth), even if satisfying those conditions dramatically increases complexity.

More commonly, interpretability is operationalized as simulability: whether humans

can use visualizations to predict the behavior of the model in new circumstances [141, 60,

100, 178, 214, 129, 128]. Though the theoretical grounding of this method is perhaps less

clear than the mental model accuracy paradigm of Kulesza et al. [122] or the cognitive load

paradigm of Abdul et al. [1], simulation tasks have the advantage of being model-agnostic
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and easy to analyze programmatically, which allows them to be used in semi-automated

human-in-the-loop optimization procedures such as Lage et al. [128]. However, such

simulability tasks generally do not present “the whole truth” of the model at once. Our

method extends the simulability paradigm from discriminative to generative modeling, but

in a way that presents the whole truth of the model.

7.2.2 Interpretable Representation Learning

Background. Representation learning is generally concerned with finding ways of associat-

ing high-dimensional instances, which we denote x, with low-dimensional representations,

which we denote z. Representation learning methods roughly fall in two categories: genera-

tive modeling, which maps low-dimensional representations z to high-dimensional instances

x, and embedding, which maps high-dimensional instances x to low-dimensional repre-

sentations z. Examples of generative models include Hidden Markov Models [75], Latent

Dirichlet Allocation [29], and GANs [80]. Examples of embeddings include t-SNE [151]

and the latent spaces of deep classification models. Examples of both simultaneously (i.e.

approximately invertible mappings) include PCA [104] and autoencoders [95].

Disentangled representations and disentanglement measures. Disentangled represen-

tations [26, 57, 93, 46] seek mappings between high-dimensional inputs and low-dimensional

representations such that representation dimensions correspond to the ground-truth fac-

tors that generated the data (which are presumed to be interpretable). To evaluate a

model’s disentanglement, many papers compute disentanglement measures with respect to

known ground-truth factors. However, not only do there exist many competing measures

[93, 45, 66, 145, 94, 204], but, to our knowledge, there exists no work that compares them to

human notions of understandability. Our work both performs this comparison and provides

a way to evaluate representation learning methods on real-world datasets, where we cannot

rely on disentanglement measures because the ground truth is generally unavailable to us.

Explaining and visualizing representations. To be understood, a representation must

be visualized or explained. For generative models, this usually means explaining each
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dimension. Many works [113, 93, 46, 45, 110] show a “latent traversal” of instances with

linearly varying values of a specific dimension and constant values of other dimensions.

Others find or construct “exemplar” instances that maximize or minimize particular (com-

binations) of dimensions [168, 169, 9]. Another visualization technique, less common

because it requires setting up an interactive interface, is to let users dynamically modify

representation dimensions and see how corresponding instances change in real time, e.g.

using sliders [84]. Related approaches have been explored for discriminative models with

predefined meaningful features, e.g. Krause et al. [118], Wexler et al. [236], and Cai et

al. [37], who use sliders to display exemplars matching user-defined concept activation

vectors [109]. However, to our awareness, interactive manipulation of autonomously learned

generative model dimensions has not been considered in an HCI context, especially to

quantify interpretability. We use interactive slider-based visualizations as a subcomponent

of our task, and test against baseline approaches using exemplars and traversals.

We do note there are other representation learning visualization methods that could

be used in interpretability quantification but do not provide insight into the individual

meanings of dimensions and are often specific to embeddings rather than generative models.

Examples include Praxis [40], the embedding projector [215], and a parallel-coordinates-

inspired extension by Arendt et al. [14], which further reduce embedding dimensionality

down to 2D or 3D with PCA or t-SNE [151]. All of these methods are interactive and can

help users understand the geometry of the data and what information the representation

preserves, but they do not explain the dimensions of variation themselves. Bau et al. [22, 23]

both visualize and quantify the interpretability of representations by relating dimensions to

dense sets of auxiliary labels, but their approach (while highly effective) is not applicable to

most datasets. Our focus is on quantifying how well users can understand representations

on their own, in terms of their dimensions, without further projection or side-information.
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7.3 Approach

We now define our proposed task for evaluating the interpretability of generative models,

which we call “interactive reconstruction,” and ground it as a measure of understanding.

7.3.1 The Interactive Reconstruction Task

Assume we are given a generative model g(z): RDz ! RDx , which maps from represen-

tations z to instances x. Also assume we are given a distribution p(Z) from which we

can sample representations z (which may be approximated by sampling from a dataset

{z(1), z(2), ..., z(N)}), as well as a list of permitted domains Z = (Z1,Z2, ...,ZDz) for each

dimension of z (e.g. a closed interval if zi is continuous, or a set of supported values if zi is

discrete). Finally, assume we are given some distance metric d(x, x0) and threshold e.

The task consists of a sequence of Nq questions. For each, we sample two representation

values z, z0 iid from p(Z), which have corresponding instance values x = g(z) and x0 = g(z0).

In an interface, we visualize x and x0 along with their distance d(x, x0) and its proximity to

the threshold e. We also present manipulable controls that allow the user to modify each

component of z within Z to interactively change x = g(z) and thus the distance d(x, x0).

The user’s goal is to manipulate the controls as efficiently as possible to bring d(x, x0)  e,

thereby reconstructing the target. Once this condition is achieved, we repeat the process

for newly sampled z and z0. If a user actively attempts to solve a question for a threshold

amount of time T to no avail, we permit them to move on.

During each question, we continuously record the values of z, the errors d(x, x0), the

dimensions i being changed, and the directions of modification (increasing or decreasing).

These records let us precisely replay user actions and from them, derive a rich set of

performance metrics, which we enumerate in Section 7.4.4. We hypothesize that, while the

task will be possible to complete without understanding the model, users will perform

it more reliably and efficiently when they intuitively understand what representation

dimensions mean. We also hypothesize that the process of performing it will teach users

these intuitive meanings when they exist—that is, when the model is interpretable.
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The above is a general definition of the interactive reconstruction task. To apply it to a

specific problem, however, a number of implementation choices must be made:

• Control of representations z: There are many different ways of inputting values for

representation dimensions (e.g., numeric fields vs. sliders for continuous dimensions,

or radio buttons vs. dropdowns for discrete dimensions), and also many different

ways of arranging and annotating them (e.g., allowing reordering, grouping, and

labeling, which can be helpful for higher-dimensional z).

• Visualization of instances x: Although some instance modalities have canonical

visualizations (e.g., images), others can be visualized in many ways (e.g., patient

medical records). Visualizations should make it easy to recognize the effects of

changing z and compare whether x and x0 are becoming closer with respect to d(·, ·).

• Choice of distance metric d(x, x0), distance threshold e, and time threshold T:

These critical parameters are best chosen together. For our experiments, we relied

on small studies for each dataset, seeking d(·, ·) and e that captured when users

subjectively felt they had manipulated x to match x0 sufficiently closely, and setting T

to a round number on the order of twice the median duration.

We describe our dataset-specific choices in Section 7.4.3, but recommend these be re-tuned

for new applications.

7.3.2 Theoretical Grounding for the Interactive Reconstruction Task

A number of sources in the HCI literature motivate and ground our interactive reconstruction

task as a meaningful measure of understanding. First, as recommended by Kulesza et

al. [122], our method attempts to present the “whole truth” and “nothing but the truth:” we

visualize the entire model without any simplifying approximations. For generative models,

visualizing the full model also means, to the greatest extent possible, visualizing dimensions

jointly rather than separately (as is the case when using, e.g., latent traversals). We adopt

this strategy in line with cognitive load theory as articulated by Sweller [223], who argues
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that “understanding” emerges from explaining interactions between elements of a schema

(“the basic unit of knowledge”), and that explaining interacting elements separately will

make material harder to understand, rather than easier to understand, because of the split

attention effect [41].

We also attempt to avoid split attention effects between the visualization and the proxy

task. In many interpretability measurement methods, these two components are visually

separate, e.g., in different portions of the screen [100, 128, 129, 178]. Such physical separation

often makes it possible or even preferable to complete the task without engaging with the

visualization, e.g., by guessing multiple-choice answers to complete the task more quickly.

In recent HCI studies of interpretability tools, both Buçinca et al. [34] and Kaur et al. [106]

note an inconsistency between outcomes in thinkaloud studies, where cognitive engagement

with a visualization is forced, and practice, where the visualization can be readily ignored.

By closely integrating the visualization and the task, we attempt to avoid this pitfall.

Finally, per Norman’s articulation of the importance of feedback for building understand-

ing in human-centered design [167], our task is structured to provide immediate, interactive

feedback. Just from looking at the screen, it is always readily apparent to users whether

they have gotten the right answer, and whether they are getting closer or further away. In

contrast, for most simulation-proxy interpretability measurement tasks [178, 129, 100, 214],

if users receive feedback at all, it is sporadic, e.g., about whether a multiple choice answer

was correct.

7.3.3 Baseline: the Single-Dimension Task

As a baseline to our interactive reconstruction task, we also consider a “single-dimension”

task, inspired by existing interpretability measurement methods for discriminative models

(Section 7.2.1). Here, users are given an instance x = g(z) and asked to guess the value of

some hidden dimension zi. To help them, users may view visualizations of other instances

as dimension i is varied, shown in a different section of the screen. For each model, users

are asked Nq questions about each dimension, and receive feedback after each question
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about whether their answer was correct. Details for our dataset-specific implementations

are in Section 7.4.5.

The single-dimension task is deliberately designed to violate our theoretical motivations;

specifically, (1) it does not present “the whole truth” of the model, (2) it visualizes dimensions

individually rather than jointly, (3) it spatially separates the visualization from the task, and

(4) it provides feedback sporadically (after each question) rather than interactively.

7.3.4 Quantifying Quality of Interpretability Measurement Methods

Measuring the accuracy of any measurement method generally requires testing with a

precisely known quantity. In this paper, we assume ground-truth knowledge that a particular

model is more interpretable than another by working with synthetic datasets constructed

for the express purpose of making this assumption reasonable, and supported by qualitative

studies. We then test how well different interpretability measurement methods detect

this assumed ground-truth difference. Where possible, we support our assumptions with

quantitative measures of models’ correspondence to ground-truth, e.g. disentanglement

measures.

Our approach contrasts with the strategy of Buçinca et al. [34], who evaluate inter-

pretability evaluation “proxy tasks” by how well they predict performance on downstream

tasks. Although the ultimate motivation for interpretability research is to improve perfor-

mance on downstream tasks ranging from better human+AI collaboration [20] to auditing

for safety [39], performance on these tasks has no explicit correspondence to understanding.

Additionally, in research settings, we often lack access to the true downstream tasks that

motivate our work; thus our downstream validation task is also a proxy. So in effect, we

are not evaluating whether a proxy task measures interpretability, but whether one proxy

predicts another.
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7.4 Implementation

We now describe how we implement our approach for a variety of representation learning

models and datasets.

7.4.1 Datasets

We considered three datasets, visualized in Figure 7.1:

• dSprites [158], a 64⇥64 binary image dataset with five ground-truth factors of genera-

tion z: shape, rotation, size, x-position, and y-position. We chose dSprites due to its

popularity in the disentanglement literature (Section 7.2.2).

• Sinelines, a 64-dimensional timeseries dataset we developed for this study. Each in-

stance x = hx1, x2, ..., x64i is a mixture of a line and a sine wave, generated by mapping:

xt = z1t + z2 + z3 sin(z4t + z5), where z1 ⇠ Uniform(�1, 1) is slope, z2 ⇠ N (0, 1) is

intercept, z3 ⇠ Exponential(1) is amplitude, z4 ⇠ Exponential(1) is frequency, and

z5 ⇠ Uniform(0, 2p) is phase. We make z 5-dimensional for consistency with dSprites,

but make x a timeseries rather than an image to probe sensitivity to instance modality.

• MNIST [132], a popular benchmark in the ML and interpretable representation

learning literature consisting of images of handwritten digits from 0 to 9. Although

the MNIST dataset lacks ground-truth representations, it does contain labels indicating

depicted digits.

7.4.2 Models

On dSprites and Sinelines, we tested the following models:

• “Ground-truth” (GT) generative models, constructed to have the same relationship

between x and z as the (intentionally interpretable) process which generated the

examples.
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Figure 7.1: Examples from the dSprites, Sinelines, and MNIST datasets.

• Autoencoders (AE) [95], a baseline nonlinear representation learning method often

considered to learn uninterpretable representations.

• Variational autoencoders (VAE) [113], which are similar to autoencoders but learn

distributions over z, with a prior on z that can be interpreted as a regularizer. Because

of this regularization effect, VAEs are widely reputed to learn more interpretable

relationships between instances and representations than standard autoencoders.

Our primary goal was to validate that our task could distinguish entangled autoencoders

from disentangled ground-truth models (both absolutely and relative to baselines).

Architecturally, for dSprites, we used the same 7-layer convolutional neural networks

(CNNs) as Burgess et al. [35], one of the original papers introducing dSprites (with the GT

model just using the decoder). For Sinelines, we used 256⇥256 fully connected networks

with ReLU activations (except for the GT model, which was simple enough to implement in

closed form). We tested all models at Dz = 5 to match ground-truth.

On MNIST, which has no ground-truth model, our goal instead was to test a broader set

of popular interpretable representation learning methods that have never been tested with

user studies. We again tested on AEs and VAEs, but also included the following models

from the disentanglement literature:
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• b-TCVAEs (TC) [45], a modification of the VAE that is trained to learn representation

dimensions zi that are statistically independent, generally considered near state of the

art in the disentanglement literature.

• Semi-supervised b-TCVAEs (SS), a modified b-TCVAE we explicitly train to disen-

tangle digit identity from style (in a discrete dimension). Though we lack full ground

truth, we expect SS to be less entangled than TC.

• InfoGAN (IG) [46], a generative adversarial [80] disentanglement method that also

learns to disentangle digit identity from digit style, but imperfectly and without

supervision.

We tested all of these MNIST models (AE, VAE, TC, SS, and IG) at Dz = 5 but additionally

tested AE, TC, and SS at Dz = 10 to probe sensitivity to representation dimensionality.

Architecturally, for all models, we use the same CNN architecture given in the papers

introducing InfoGAN [46] and b-TCVAE [45] (Table 4), changing only the size of the latent

dimension Dz. Training details were chosen to match original specifications where possible;

see Section C.1 of the Appendix for additional details as well as model loss functions.

On dSprites and Sinelines, we quantified the extent to which our models matched ground

truth with disentanglement measures. Specifically, we computed the DCI disentanglement

score [66] and the mutual information gap (MIG) [45], which are commonly included in

disentanglement papers. In addition to these overall scores, we computed pairwise mutual

information to visualize dependence on a per-dimension basis. Figure 7.2 shows each of

these metrics for each dimension and dataset. On both datasets, GT models are perfectly

disentangled and AE models are heavily entangled. VAEs are somewhere in the middle,

partially disentangling horizontal and vertical position from shape, scale, and rotation

on dSprites, and partially disentangling linear from sinusoidal factors on Sinelines. As

mentioned previously in Section 7.3.4, we use these metrics to support our assumption that

GT models are more interpretable than AEs. On MNIST, we have no ground truth model,

but we hypothesize that the semi-supervised (SS) model will be most interpretable due to
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Figure 7.2: Disentanglement scores (in plot titles) and pairwise mutual information (in heatmaps, approxi-
mated using 2D histograms) between true generative factors and representation dimensions. By construction,
ground-truth (GT) models are perfectly disentangled, while VAEs learn to partially concentrate informa-
tion about certain ground-truth factors into individual representation dimensions. AEs exhibit less clear
relationships and have the lowest disentanglement scores.

disentanglement between its continuous dimensions and ground-truth digit identity.

7.4.3 Interface

Figure 7.3 shows examples of the user-facing interface for this method, implemented for

two different datasets. The following interface elements correspond to the interactive

reconstruction task parameters described in Section 7.3.1:

Control of representations z: To specify closed-interval continuous dimensions of z, we

use slider components, while to specify finite-support discrete dimensions, we use unlabeled

radio buttons. We sampled initial z and target z0 from p(Z) set to the empirical distribution,

or specifically a heldout testing split of the dataset. Slider ranges were determined by taking

the empirical minimum and maximum values of each dimension zi over this heldout split.

The one exception to this procedure was for the InfoGAN model, where sampling and limits

were determined from the prior.
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Visualization of instances x: For images, visualization was straightforward, while

for Sinelines, we used line charts with dashed lines at y = 0 and appropriate limits. In

addition to visualizing x and x0 side-by-side, we provided an option to overlay them with

partial transparency, which we found was helpful in pilot experiments for fine-tuning. This

defaulted to on for our synthetic experiments, but was defaulted to off for MNIST after

pilot users expressed the side-by-side view was more helpful. For MNIST in particular,

to facilitate remembering (and recording) user impressions of dimension meanings, we

allowed users to input custom labels next to the corresponding controls in the interface.

Distance and time thresholds: For each dataset, we defined d(x, x0) as a Jaccard dis-

tance [135], i.e., the fraction of disagreeing dimensions of x and x0 to total active dimensions

of x and x0, with dataset-specific definitions of agreement and activity. Exact expressions

are given in Section C.2 of the Appendix. Although these choices worked well for black and

white images and consistently-scaled timeseries, different metrics might be necessary for

other data modalities; we discuss this further in Section 7.7. Because d(x, x0) was between 0

and 1, we visualized it as an agreement percentage rather than a distance, and chose e = 0.1

(or a 90% agreement threshold) for synthetic datasets and e = 0.25 (or a 75% agreement

threshold) for MNIST.

The time threshold T for skipping questions was set to 30 seconds for dSprites and

Sinelines and 45 seconds for MNIST. We paused this hidden countdown whenever users

were inactive for more than 3 seconds.

We implemented tasks as single-page, client-side web applications, with machine

learning models running directly in users’ web browsers after being converted to Ten-

sorFlow.js [217]. Despite the fairly large size of certain models (e.g. 7-layer convolu-

tional neural networks), only two users out of hundreds reported problems running

them interactively in-browser. Links to the task for all models can be found at http:

//hreps.s3.amazonaws.com/quiz/manifest.html.
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Figure 7.3: Screenshots of the interactive reconstruction task on Sinelines (top, with x and x0 overlaid
and dotted lines indicating the region of allowable alignment) and MNIST (bottom, with separated x and
annotations for z).

7.4.4 Interactive Reconstruction Metrics

We computed the following performance metrics from our records of users performing the

interactive reconstruction task:

• Completion rate: For each model, we measure the fraction of questions the user

solves, i.e. moves the sliders and/or chooses radio buttons to make d(x, x0)  e, rather

than skipping after T seconds.

• Response time: For each model, we measure the average time it takes participants to

complete each question.

• Slide distance: For each model, we measure the average total distance moved by

sliders, in units of full slider widths, for each question. Discrete changes count as 1.
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• Error AUC: We measure the “area under the curve” of mean squared difference

between x and x0 over the total time the user is attempting to solve the quiz.

• Self-reported difficulty: After answering a “stage” of questions about a model, users

rate that difficulty from 1 to 7 using a Single Ease Question (SEQ) [195].

We store snapshots of x and z every 100ms while the value is changing in a constant

direction, or whenever the active direction or dimension changes. While this list is not an

exhaustive enumeration of all possible metrics applicable to the task, others can be defined

and computed post-hoc as we store a nearly complete record of user actions over time.

7.4.5 Single-Dimension Task Parameters

In this section, we describe how we instantiated the single-dimension task for the synthetic

datasets. This task has two primary implementation parameters: the prediction task and the

visualization.

For the prediction task, we opted for a multiple-choice classification task where, for

a particular example x visualized in the same way as in the interactive reconstruction

task, users decided whether zi is “Low,” “Medium,” or “High.” These regimes were

respectively defined in terms of the 1st-5th, 48th-52nd, and 95th-99th percentiles of the

marginal distribution of encoded x in a held-out split of the original dataset. We sampled z

by first sampling from the empirical joint distribution (i.e. a heldout split of the dataset),

then overriding zi to a value selected uniformly from one of these regimes. Users answered

two questions for each dimension i, and received the correct answer as feedback.

For the visualization, which is the sole task component dependent on the model, we

tested two versions of the task, one using latent traversals and the other using synthetic

exemplars, as described in Section 7.2.2. For traversal visualizations, for 5 randomly sampled

values of z, we plotted x values corresponding to overriding zi to 7 linearly spaced values

between “Low” and “High” as defined above. For exemplar visualizations, we showed

“Low,” “Medium,” and “High” bins with 8 examples each. Both of these visualizations force
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users to generalize from finite samples, which can lead to ambiguities if randomly sampled

z are not diverse. To mitigate this potential problem, we provided users with a “Show More

Examples” button. Screenshots for the single-dimension task on the dSprites dataset are

shown in Figure 7.4.

7.4.6 Single-Dimension Metrics

We recorded several performance metrics specific to the single-dimension task:

• Correctness rate: For each model, we measured the percentage of questions the

participant answered correctly.

• Self-reported confidence: For each model, we measured whether users agreed with

the statement “I’m confident I’m right” on a 5-point Likert scale.

• Self-reported understanding: Similar Likert measurement, but for “The dial makes

sense.” (We referred to dimensions as “dials” in the interface.)

In addition to these task-specific metrics, we also recorded response time and self-reported

difficulty with the SEQ, which were shared in common with interactive reconstruction.

Figure 7.4: Screenshots of the dSprites single-dimension task (left), showing ground truth visualizations with
exemplars (center) and traversals (right).
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Diagram of Experiments

GT
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Figure 7.5: Diagram of experiments performed (except the small synthetic pilot). On synthetic datasets,
experiments were designed to evaluate the best task (assuming the best model). On MNIST, experiments were
designed to evaluate the best model (assuming the best task).

7.5 Study Methodology

With implementation decisions now specified, we describe the four studies we ran, two

larger-scale studies on MTurk and two smaller-scale lab study sessions (see also Figure 7.5

for a graphical depiction). All experiments began with a consent form, a tutorial, and

practice questions on an easy example. Experiments were deployed on the web and are

available at http://hreps.s3.amazonaws.com/quiz/manifest.html. Code for our

study is available at https://github.com/dtak/interactive-reconstruction.
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7.5.1 Experimental Design

Synthetic Think-aloud Pilot

We began by running a small pilot study with N = 3 users (referred to as U1, U2, and U3)

to test out each possible task on the dSprites and Sinelines synthetic datasets (interactive

reconstruction, single-dimension with exemplars, and single-dimension with traversals),

with each user completing two of the six task/dataset conditions with two of the six models

(drawn randomly without replacement to ensure complete coverage). Participants were

asked to think aloud and describe their strategies for solving each problem. Interviews were

recorded and transcribed, and the feedback was used to make minor clarifying changes to

the interface.

Synthetic MTurk Study

We then ran a larger version of the synthetic dataset study on MTurk, where each partic-

ipant (N = 15 per dataset and task, and N = 90 total) completed one of the six possible

dataset/task conditions, but for all three models (AE, VAE, and GT, with the order random-

ized). To keep overall quiz length manageable, Nq was set to 5 for interactive reconstruction

and 10 for single-dimension tasks (that is, 2 questions per dimension). Differences were

analyzed with repeated-measures ANOVA and paired t-tests.

MNIST Think-aloud Study

We next ran a think-aloud study with N = 10 participants on MNIST, testing out a wider

variety of models but only for the interactive reconstruction task. Each participant (whom

we refer to as P1-10) completed interactive reconstruction for three models (AE, TC, and SS,

order drawn randomly without replacement), with odd and even-numbered participants

working with 5D and 10D representations respectively. Model-specific stages ended after

7 questions had been completed or 10 minutes had elapsed. After each stage, in addition

to the single ease question [195], users entered raw NASA-TLX scores [88] and answered
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Likert scale questions about whether they felt they understood representation dimensions.

Differences were analyzed with repeated-measures ANOVA and paired t-tests. During each

stage, users were also encouraged to label dimensions if possible and continuously describe

their impressions of the task, which we recorded.

MNIST MTurk Study

Finally, we ran a large-scale MTurk study on MNIST. As with the synthetic dataset study,

we had N = 15 participants per condition (for N = 105 participants total). However, instead

of showing all models and varying the task, we limited the task to interactive reconstruction

and varied the model, specifically showing each participant one of AE5, VAE5, IG5, TC5,

SS5, AE10, or SS10. Nq was increased from 5 to 7 for additional signal and to make the task

sufficiently long. Differences were analyzed with one-way ANOVA and independent t-tests.

7.5.2 Recruitment

Think-aloud Studies

For our think-aloud studies, we recruited undergraduate and graduate students from

computer science mailing lists at an academic institution, and compensated participants

with Amazon gift cards ($15/hour for synthetic pilot study sessions, which we increased

to $20/hour for MNIST to incentivize recruitment for a larger study). We recruited N = 3

participants for the synthetic pilot and N = 10 for MNIST.

On the synthetic datasets, two participants were male, one was female, and all were

graduate students. On MNIST, two were male, eight were female, three were undergraduates,

and seven were graduate students. All participants in both studies were aged 18-34.

MTurk Studies

For each MTurk experimental condition (6 for synthetic datasets and 7 for MNIST), we

recruited N = 15 participants on Amazon Mechanical Turk with unique worker IDs. This
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translates to a total of 90 participants on the synthetic dataset study and 105 participants for

the MNIST-based study.

For single-dimension tasks, participants were excluded if they answered practice ques-

tions incorrectly. For traversal visualizations, the retention rate was 71%, while for exemplars,

it was 91%. For interactive reconstruction, we included all participants who successfully

completed the study on synthetic datasets (as users could not proceed past the practice

questions without answering them correctly), but added an additional inclusion criteria

on MNIST requiring participants to have reconstructed at least one of seven instances

successfully. We adopted this criteria in part because we noticed several participants did

not realize they could use radio buttons (which were not included in the practice questions)

on the IG and SS tasks (never changing them during any question), and in part to filter

out users who gave up completely on extremely hard models (e.g. the 10D AE). Retention

rates were highest (88%) for the SS10 model and lowest (42%) for the AE10, with an overall

average of 67%. In total, 156 participants were needed to get 105 retained participants on

MNIST and 115 participants were needed to get 90 retained participants on synthetic tasks.

Compensation was set with the intention of ensuring that actively engaged MTurk

users would earn at least $15/hr, with time estimates based on pilot experiments and

interactive reconstruction time limits. On the synthetic datasets, users were paid $6 for both

single-dimension and interactive reconstruction tasks, which took an average of 13 minutes

($27/hr). The interactive reconstruction experiments took a slightly longer average of 18

minutes ($20/hr), with 95% of participants finishing under 34 minutes ($11/hr). For the

MNIST dataset, users were paid $3.75 for completing tasks, which took an average of 15

minutes ($15/hr), with 80% of participants finishing under 20 minutes ($12/hr) and 95%

finishing under 38 minutes ($6/hr).

Demographic information was recorded in a post-quiz questionnaire. In the synthetic

study, participants were generally young (58% between 18-34), North American (68%, with

most others from Asia or South America), college-educated (79% had Bachelor’s degrees or

above) and male (64%), with gender recorded per guideline G-4 of [197]. Demographics
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were similar on MNIST (49% aged 18-34, 59% North American, 71% male, and 81% with

Bachelor’s or above).

7.6 Results

Since the think-aloud and MTurk study participants worked with the same datasets and

completed similar or identical tasks, we will first present results from all the synthetic

dataset studies and then move on to results from the MNIST dataset studies. Adding up

ANOVAs and t-tests across all our experiments and pairs of models, we ran 435 statistical

tests, giving us a Bonferroni-corrected threshold of 0.00011 for an initial a of 0.05.

7.6.1 Synthetic Study Results

MTurk, Interactive Reconstruction

As shown in Figure 7.6, the interactive reconstruction task clearly differentiated ground

truth (GT) models from AEs. Completion rates were significantly different on both dSprites

(F2,28 = 32.3, p<0.0001) and Sinelines (F2,28=23.4, p<0.0001) in the directions we hypothe-

sized. GT model completion rates on both dSprites (.75±.26) and Sinelines (.83±.19) were

significantly higher than AE completion rates (.15±.19, t14=8.5, p<0.0001 on dSprites and

.34±.26, t14=6.4, p<0.0001 on Sinelines). VAE models, though only marginally significantly

different, were in the middle (.51±.33 on dSprites and .63±.28 on Sinelines). These results

closely mirror the disentanglement metrics in Figure 7.2.

We also saw significant differences in self-reported difficulty (F2,28 = 32.3, p<0.0001

on dSprites, F2,28=11.7, p=0.0002 on Sinelines) and error AUC (F2,28=31.6, p<0.0001 on

dSprites, F2,28=14.1, p<0.0001 on Sinelines). Between AE and GT models, these differences

were large and least marginally significant. VAEs were no longer exactly in the middle,

however. Instead, they more closely matched the AE model on dSprites and the GT model

on Sinelines—e.g. for difficulty, average scores for the AE, VAE, and GT were 6.9, 6.4, and

4.2 on dSprites vs. 5.9, 4.1, and 4.0 on Sinelines.
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Figure 7.6: Boxplots of MTurk dependent variables across the 15 participants for each synthetic data task
condition. Blue triangles indicate means, black lines indicate medians, and stars indicate p-values for differences
between means (****=p<0.0001, ***=p<0.001, **=p<0.01, *=p<0.05). Expected differences between AE and
GT models emerge clearly from interactive reconstruction results, but not single-dimension results.

Think-aloud, Interactive Reconstruction

Interactive reconstruction task users felt they understood GT models, did not under-

stand AEs, and partially understood VAEs in a way that matched the disentanglement

scores in Figure 7.2. On dSprites, U1 assigned meanings to GT model dimensions almost

immediately, noting on the first question that “[dial 1] is changing its shape, [...] dial 2 is

changing the size, [...] and then 3 seems like it’s changing the rotation, and 4, probably x-position.

And then 5 is y-direction I guess?” For the AE, however, U1 “d[id]n’t understand what the dials

[we]re doing.” On Sinelines, U2 found the GT model “much easier to figure out” than the

AE, where it was “hard to tease out exactly what each [dimension] is doing.” The difficulty of

understanding the AE model caused them to switch strategies from ”match[ing] [dimensions]

sequentially” (which they could do with the GT model) and instead “look[ing] at the current

alignment and then mak[ing] sure that number is increasing” by ”tweak[ing] the dials and see[ing]

what happens.”

Users partially understood VAEs. On the Sinelines VAE, U2 reported they could “quickly

figure out” there “was one dial that [controlled] slope” and another that “did [vertical] translation”,
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but that “squiggliness” was ”quite hard.” These reports match the dependence plots in Figure

7.2, which show that the Sinelines VAE disentangled linear slope and intercept from sine

wave parameters. On the dSprites VAE, U1 felt “dials 1, 2 and 3 are more predictable” after

determining “dial 3 is changing the size” while “dials 1 and 2 are moving the object in the diagonal

way.” These comments again matched the dependence plots in Figure 7.2, which suggest

position and size are controlled by VAE dimensions 1-3, while shape and rotation are

controlled by dimensions 4-5. However, U1 did find the “diagonal” relationship (which was

also nonlinear) confusing, which forced them to randomly experiment more within each

group of dimensions. In contrast, for U2, linear slope and intercept were disentangled both

from sine wave dimensions and each other. This difference may explain why, relative to the

GT, VAEs had higher MTurk difficulty ratings and error AUCs on dSprites than Sinelines

(despite having similar DCI scores).

MTurk, Single-Dimension

The single-dimension task did not clearly differentiate models. In the MTurk results,

no differences in any metrics were significant at a = 0.00011, though correctness rates

for the exemplar-based version of the task were closest (F2,28=5.8, p=0.008 for dSprites

and F2,28=6.6, p=0.005 for Sinelines, though the most significant relationships were in the

wrong direction). Response time and self-reported confidence/understanding were almost

identical across models, datasets, and visualizations. On dSprites, we did observe that GT

models had higher correctness rates (.75±.14) and lower difficulty ratings (4.0±1.6) than AEs,

which had .61±.18, p=.01 for correctness and 5.3±1.3, p=.03 for difficulty (on exemplars).

However, on Sinelines, AEs actually emerged with the highest average correctness rates in

the exemplar-based MTurk study (AE=.81±.15 vs. GT=.65±.11, p=0.003), as well as the

lowest difficulty (AE=4.5±1.6 vs. GT=5.3±1.5, p=0.003). Our qualitative results below

(as well as the dimension-by-dimension correctness rate breakdown in Figure 7.7) suggest

this is not because users understood the AE, but because of helpful AE pathologies and

unhelpful GT symmetries.
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Think-aloud, Single-Dimension

Users performed the task without trying to understand the model. Although U1 initially

tried to formulate “hypotheses” about the meanings of dimensions, they found these “ir-

relevant for [them] to make decisions.” U2 described their strategy as “match[ing] directly”

without trying to “tease apart the different dimensions,” and P3 called it “blind trust” in “visual

matching.”

Visualization pathologies also biased the results in directions unrelated to understanding.

On Sinelines, we noticed a lack of diversity in “High” and “Low” samples from AEs, which

sometimes made the matching problem trivially easy for all participants. For GT models,

we also noticed questions for particular were pathologically hard due to symmetries in

the generative process. One example is that for the rotation feature on dSprites and the

phase feature on Sinelines, “Low” values near 0 and “High” values near 2p were nearly

indistinguishable. For GT models on Sinelines, participants also found it hard to detect

changes in amplitude at low frequencies, as these could be alternately explained by slope,

and harder still to detect changes in frequency at low amplitudes, as near-linear examples

were effectively unaltered.

Exemplars vs. Traversals.

Though not central to our narrative, we found some evidence that exemplars may have

been more effective than traversals for single-dimension performance. U3, who completed

versions with both visualizations, reported that the task was easier with exemplars because

seeing instances clustered into bins “visually help[ed them] understand the three categories,”

whereas with the traversal visualization, it was necessary to “mentally create” those categories

by imagining spatial “divisions.” U3 also hypothesized it was easier for them to detect

patterns on the right-hand side of traversal visualizations due to their experience “reading

from left to right,” which they were concerned might introduce “a bias” in their answers.

We see such evidence of spatial bias in Figure 7.7, whose bottom-left plot shows that

MTurk users struggled to answer traversal questions about dSprites x-position, where the
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Figure 7.7: AE and GT correctness rates by representation dimension for MTurk single-dimension tasks. Dots
show means with standard errors, x-axis shows GT dimensions (AE order is arbitrary). Compared to AEs,
some GT dimensions had much lower or higher correctness rates than others, rising to near 100% for attributes
like shape, scale, and slope and falling to near 33% (the rate of random guessing) for others, especially periodic
attributes like rotation and phase. These differences suggest that questions about certain conceptually simple
dimensions were pathologically difficult to answer from static visualizations.

movement of the shape was in the same direction as the movement of the images, but

answered questions about y-position almost perfectly, where the movement of the shape

was orthogonal to the movement of images. Meanwhile, accuracy on these questions for

exemplars (top-left plot) was intermediate in both cases, showing less negative bias for

x-position though also less positive bias for y-position. Overall, these results suggest that

visualization details matter for performance, but also that it may be better to utilize time

rather than space when visualizing changes in spatial features, which is effectively what

occurs with interactivity.

7.6.2 MNIST Study Results

MTurk, Interactive Reconstruction

As shown in Figure 7.8, Interactive reconstruction metrics clearly distinguished mod-

els, especially AE vs. SS. In general, we found significant differences between models

(F28=4.7, p=0.0003 for completion rate, F28=4.9, p=0.0002 for difficulty, and F28=11.4, p<0.0001
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Figure 7.8: Boxplots across the 15 MTurk participants for each MNIST model, for dependent variables that
were significant in the synthetic tasks. Blue triangles indicate means, black lines indicate medians, and
stars indicate significance as in Figure 7.6. As with the qualitative studies, semi-supervised (SS) models
performed best by each measure, while standard autoencoders (AE) performed near the worst, especially at
higher representation dimensions (right).

for error AUC), with the sharpest pairwise contrasts being significant or nearly significant

differences between AE and SS models. For example, at 5D for the AE vs. SS, completion

rates were 0.38± 0.23 vs. 0.72± 0.24 (t28=�3.9, p=0.0006), subjective difficulty was 5.6± 1.6

vs. 3.4 ± 1.5 (t28=3.7, p=0.001), and error AUC (given in units of 1000s for conciseness)

was 15.7 ± 4.3 vs. 6.3 ± 4.7 (t28=5.5, p<0.0001). The next-best performing model was

the b-TCVAE (TC), with an average completion rate of 0.61 ± 0.27, subjective difficulty of

5.0 ± 1.5, and error AUC of 16.0 ± 14.0. Although the average error AUC was higher for the

TC model than the AE, this was largely due to a small number of extreme outliers (note the

high variance). Comparing medians, we have 10.5 for the TC model and 14.5 for the AE

model, which matches the overall trend of AE < TC < SS. Results for the IG and especially

the VAE were generally slightly worse and closer to AE performance.

Performance degraded when increasing dimensionality, but not as badly for methods

thought to be interpretable. When we increased Dz from 5 to 10, average completion rate

fell (0.38!0.35 for the AE, 0.73!0.71 for the SS), error AUC rose (15.7!47.8 for the AE,

6.3!7.6 for the SS), and subjective difficulty generally rose (3.4!4.4 for the SS, though it

fell slightly from 5.6!5.3 for the AE), though none of these results were near significance

except the AE’s increase in error AUC (t=�3.7, p=0.002). Examining medians, however,

we find that median completion rate fell dramatically for the AE (3/7!1/7, the minimum

possible value for retention), while for the SS it actually rose (5/7!6/7), suggesting that
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Figure 7.9: Subjective measures for the MNIST think-aloud study (means ± standard deviations). The
first four measures are NASA-TLX scores [88], the fifth is users’ subjective agreement (from 1-5) with the
statement “I understood what many of the dimensions meant,” and the last is a single ease question (SEQ)
[195] assessment of difficulty from 1-7. Users rated SS models easiest across all measures, though for higher
Dz, subjective understandability was lower, frustration was higher, and perceived performance gaps were
greater.

degradation from increasing dimensionality was more drastic for the AE than the SS.

Think-aloud, Interactive Reconstruction

Multiple sources of evidence suggest users understood the SS well and the AE poorly.

The first source is subjective measures, which are plotted in Figure 7.9. Though not always

significant at N = 5, they suggest not just that the difficulty and cognitive load of the

task varied across models (with AE generally rated hardest and SS easiest), but also that

dimension understandability varied in the same way, e.g., with SS rated most understandable

at 5D with 3.6±0.5 and AE rated least understandable with 1.4±0.5 (t4=11.0, p=0.0004).

When increasing Dz to 10, frustration grew and subjective understanding of SS models fell

(to 2.4±0.5, t4=6, p=0.004), but relative differences remained fairly consistent.

The second source of evidence is agreement between user-entered dimension labels,

shown for Dz = 5 in Figure 7.1. On average, only 20% of users were able to assign labels to

any AE dimensions, but 100% were able to do so for at least one SS or TC dimension, with

all dimensions at Dz = 5 and many at Dz = 10 having at least 80% coverage. Additionally,

for many SS dimensions, these independently-assigned labels agreed closely. TC model

labels were less consistent, suggesting more entanglement with the digit.

The third source of evidence is users’ verbal descriptions. None of the 10 participants

made any comments indicating that they found the AE comprehensible, with P3 commenting

that “the dials didn’t have any discernible meaning”, and P8 concluding that “the meanings of
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Table 7.1: Labels assigned to MNIST Dz = 5 representation dimensions.

Model Dimension User-Assigned Labels

AE5

Continuous 1 "791"

Continuous 2 "thickness"

Continuous 3 "rotate"

Continuous 4 "stretch"

Continuous 5 —

TC5

Continuous 1 "thickness", "0-1", "closedness", "2-0"

Continuous 2 "shrinking horizontally", "paint white", "0-1"

Continuous 3 "diagonal", "rotate", "4-5-3"

Continuous 4 "add bottom left", "3-5-6", "3-5-blob"
Continuous 5 "ccw", "6-7", "7-6?"

SS5

Discrete 1 "number", "Digit", "Class", "digit"
Continuous 1 "up", "Widthish", "paint white", "rotate cw, change focus"

Continuous 2 "ccw", "LR Skew", "Rotation", "rotate", "skew rotate cw/ccw"
Continuous 3 "curve", "TB Skew", "up down bias", "focus up/dwn"
Continuous 4 "thickness", "Wide", "width", "horiz thickness somewhat"
Continuous 5 "left", "Thick", "paint black", "line thickness/focus but white"

All labels assigned to Dz = 5 models by participants in the MNIST thinkaloud study. Bold text shows labels
experimenters identified as consistent between participants. The semi-supervised (SS) model had both the most
labels and the most consistent labels, while the autoencoder (AE) had the fewest. Labels for Dz = 10 are given
in Table C.1 in the Appendix.

the dials aren’t helpful in this one for solving the problem most efficiently.” In contrast, 9/10

participants felt that the SS model was “the easiest to understand and label” (P3), with 100%

agreeing it was more comprehensible than the AE. This was in large part “because it [...]

let you choose the number” (P4, with all participants commenting on this in some manner),

though 8/10 participants also expressed that the continuous dimensions were at least

partially understandable. For example, P1 noted that they “understood what most of the

dimensions were doing, especially rotating.” However, unlike with the synthetic GT models, no

participants claimed complete understanding; for example, P4 felt “there were some dials that

were easy to tell, but there were others that were more obscure.”

The TC model consistently fell between the others, with 8/10 commenting that it was

more comprehensible than the AE, and 9/10 commenting that it was less comprehensible

than the SS. Subjective descriptions varied; compared to the AE, P9 felt able to “understand

and write down and remember” what TC dials meant, despite being “worried” that “the

framework [they] built might not be accurate.” P7 felt they could “understand physically” what
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certain dimensions were “trying to do” but had trouble expressing it verbally; they described

it as being like a “matching game” where “you know what you mean but there’s not an agreed

upon word for it.”

Differences in understanding led to differences in strategy. When users understood

dimensions, they used that understanding to perform the task more efficiently. On the SS

model, P5 “used the dials that [they] understood first” and “had an idea of which way to move”

them, while P8 felt it was “pretty easy to know which [SS] dial to pick.” P7 was able “to be

intuitive” when they “could figure out what the dials meant.” P1 even felt a degree of mastery,

saying that for the SS model, they “had it down to a more exact science.”

In contrast, when users did not understand dimensions, they gravitated towards an

inefficient but less cognitively taxing strategy similar to gradient ascent. P3 described this

strategy as trying to “watch one slider and look at the alignment number of see if it reaches a

local max,” with some participants “proceeding through dials one at a time” (P10) and others

selecting them in “a very random order” (P8). Users generally did not generally want to resort

to this strategy; for the AE, P9 started off by putting in significant effort “trying to see if [they]

could find any understanding of what the dials meant” but “it didn’t work,” and with reluctance,

their “strategy changed” to “finicking with the dials.” However, P8 felt that for complicated

models, the gradient ascent strategy was actually “less mentally demanding” because “not

even trying to figure out” dimension meanings meant the task was sufficiently mindless that

they could “do something else at the same time,” such as “hold a conversation.” Users felt this

was inefficient, with P2 commenting that “this is definitely not the fastest strategy,” but when

“there wasn’t any easy way to define anything [...] to do it systematically feels really annoying” (P8).

These comments may help to explain why the differences in subjective measures of effort

were less significant than differences in frustration, understanding, and performance.

7.7 Discussion

As shown in Figure 7.6 and Table 7.2, interactive reconstruction metrics differentiated

entangled and disentangled models, both absolutely and relative to baselines. On both
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Table 7.2: Representation learning model metrics and links.

Model Information Disentanglement Interactive Reconstruction
Dataset Model MSE DCI [66] MIG [45] Completion % Difficulty Error AUC/103 Link

dSprites
AE5 6.5 0.14 0.03 0.15±0.19 6.93±0.25 55.8±25.6 x

VAE5 8.1 0.40 0.09 0.51±0.33 6.20±0.91 60.1±26.6 x
GT5 8.9 1.00 1.00 0.75±0.26 4.20±1.60 23.6±5.9 x

Sinelines
AE5 0.6 0.21 0.03 0.34±0.26 5.87±1.67 163.5±90.0 x

VAE5 3.3 0.40 0.15 0.63±0.28 4.07±1.84 59.6±47.8 x
GT5 0.0 1.00 1.00 0.83±0.19 4.00±1.71 52.0±48.9 x

MNIST

AE5 15.5 — — 0.38±0.23 5.60±1.62 15.7±4.3 x
VAE5 16.2 — — 0.40±0.31 5.87±1.15 18.6±13.7 x
IG5 — — — 0.51±0.31 5.67±1.30 21.3±8.6 x
TC5 25.4 — — 0.62±0.26 5.00±1.41 16.0±13.1 x
SS5 20.8 — — 0.73±0.24 3.40±1.54 6.3±4.7 x

MNIST
AE10 7.2 — — 0.35±0.29 5.27±1.73 47.8±34.0 x
TC10 24.9 — — — — — x
SS10 20.7 — — 0.71±0.29 4.40±1.40 7.6±3.3 x

MTurk interactive reconstruction metric means and standard deviations along with general metrics for each of
the models used in all experiments. Mean squared error (MSE) measures autoencoders’ errors reconstructing
inputs not seen during training. DCI and MIG are measures of disentanglement applicable to synthetic
datasets. Bold entries indicate least error / greatest interpretability or disentanglement in each group. Links go
directly to tasks for each model (skipping instructions).

synthetic datasets, these metrics (specifically completion rate, difficulty rating, and error

AUC) clearly distinguished the entangled AE from the disentangled GT model. Single-

dimension task metrics, on the other hand, showed a much less clear relationship with

disentanglement, sometimes predicting that the highly entangled autoencoder was more

interpretable than ground truth. On MNIST, interactive reconstruction metrics continued

to meaningfully differentiate models in a manner consistent with hypotheses from the dis-

entangled representations literature (e.g. b-TCVAEs especially semi-superivsed b-TCVAEs

were more interpretable than AEs and standard VAEs).

Interactive reconstruction metrics measured understanding. This is a major claim, but

our results suggest that performing the task helped users understand models, and that

understanding models helped users perform the task. First, we know that after performing

interactive reconstruction, users felt they understood the ground-truth interpretable models

much more than unregularized autoencoder models. On MNIST, where there was no GT
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Figure 7.10: Changes in average MTurk interactive reconstruction metrics between the first and last (Nq �
1)/2 questions (error-bars show standard error and are omitted on MNIST for readability). GT/SS models
show the most consistent improvements over questions (suggesting conscious effort / learning) while AEs
sometimes show degradation (suggesting users give up).

model, users held similar feelings towards the SS vs. the AE. Although one could attribute

these feelings to an illusion of explanatory depth [193], that would not explain why user

feelings were consistent for the same pairs of models or why users assigned similar labels

to dimensions of models they felt they understood (Table 7.1). It also would not explain

evidence of learning across trials, e.g. why performance increased most consistently for

interpretable models (Figure 7.10). Overall, the evidence suggests that users achieved mean-

ingfully different levels of model understanding by performing the interactive reconstruction

(and not the single-dimension) task.

Second, we found that when users felt they understood the meanings of dimensions, they

could modify them in a single pass through the list, knowing in advance in which direction

and how much to change them. This allowed them to solve problems efficiently, leading

directly to high completion rates and low error AUC. When users did not understand

dimensions, we found that they tended to adopt less efficient gradient ascent or random

experimentation procedures with numerous loops through the full set of dimensions (or a

partial set, in the intermediate-understanding case).

A competing hypothesis could be that, rather than gaining understanding, users always

used gradient ascent or experimented randomly, but just happened to more easily stumble

upon solutions with the models we assumed were “interpretable” than the models we

assumed were “uninterpretable.” In certain cases, this effect may be partially operative.

For example, on MNIST, AEs consistently have the lowest reconstruction error (shown in
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Table 7.2), implying they can reconstruct a wider variety of images and therefore have a

larger “search space.” Meanwhile, TCs consistently have the highest reconstruction error

(25.4 vs. 15.5 at Dz = 5) and therefore the smallest search space, so randomly experimenting

users ought to happen upon solutions more quickly.

However, this hypothesis is at odds with our qualitative observations, and also conflicts

with our quantitative results in many cases. For example, on MNIST, the SS model has lower

reconstruction error (20.8 at Dz = 5) and thus a larger search space than the TC model,

but it performs much better. On Sinelines, the GT model has precisely zero reconstruction

error but still performs best. Although having a smaller search space may be helpful (and

arguably less expressive models may often be easier to understand), we posit that task

performance depends more strongly on the understandability of a search space, rather than

its size.

Generalizability. It is worth emphasizing that interactive reconstruction differentiated

models in qualitatively similar ways across multiple datasets (dSprites, Sinelines, and

MNIST) and user groups (workers on Amazon Mechanical Turk and students in Computer

Science). This consistency suggests that interactive reconstruction can be useful as a research

tool for comparing interpretable representation learning methods in varied contexts. Some

innovation (beyond choosing appropriate parameters per Section 7.3.1) may still be required

to adapt the method to non-visual or discontinuous data modalities (e.g. audio, text, or

medical records) or to specific user groups in application-grounded contexts (per Doshi-

Velez and Kim [60]). However, while it is desirable for interpretable representation learning

algorithms to generalize to all contexts, interpretability measurement tools can afford to be a

little more domain-specific, as long as they can still identify the algorithms that output the

most interpretable models across contexts.

Limitations. Interactive reconstruction has limitations not shared by the single-dimension

task which our experiments do not fully explore. First, these tasks require interactive vi-

sualization, which may be technically challenging for practitioners to implement, though

the increasing usability of efficient web-based machine learning frameworks [217] helps.
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Second, interacting with all dimensions simultaneously may be overwhelming for models

with many tens or hundreds of representation dimensions. Potential workarounds include

allowing users to annotate, as with MNIST, and/or group dimensions, or defining tasks

over subgroups rather than the full set. However, we note that 100D representations may be

inherently uninterpretable due to limits on working memory [223]—unless the models are

structured so that only sparse subsets of dimensions need to be considered simultaneously

(a strategy we consider in Chapter 8).

Our task also requires setting several parameter choices sensibly. For example, despite

our initial pilots on MNIST, 8/10 think-aloud study participants made at least one comment

that our distance metric, the intersection-over-union alignment percentage, did not match

their intuitive notion of perceptual similarity, with P3 commenting that sometimes the

images “look similar but the alignment [percentage] doesn’t reflect that.” Although it was

uncommon for users to reach the threshold alignment e without feeling that the images

were similar, they felt frustrated that changes in d(x, x0) seemed unrelated to progress early

on. Although we feel confident our method will generalize to many datasets and data types,

our experience suggests practitioners will need to take care when selecting metrics d(x, x0)

and thresholds e. Future work could explore choosing example-specific thresholds or, on

visual data, using metrics explicitly designed to model perceptual similarity [234, 242, 54]

(if they can be evaluated efficiently in-browser).

Finally, interactive reconstruction is specific to generative models, e.g. autoencoders and

GANs. Single-dimension tasks, however, can be made to support the other main category

of representations, embeddings, via feature visualization [168]. Evaluating embedding

interpretability is an area for future work. Cavallo et al. [40], Smilkov et al. [215], and

Arendt et al. [14] may provide a foundation.

7.8 Conclusion

Developing reliable methods of evaluating interpretability is important for progress in inter-

pretable ML. In this study, we introduced an interactive reconstruction task for evaluating

119



the interpretability of generative models, which have largely gone unstudied in the growing

literature on human factors in ML. We validated our method by verifying it was effec-

tive at identifying ground-truth differences in model interpretability—both absolutely and

relative to baselines—and that differences in objective performance metrics corresponded

to meaningful differences in subjective understanding, which was measured in multiple

independent ways. We then applied it to a wide range of representation learning methods

from the disentanglement literature, and found evidence that methods which have been

shown to improve disentanglement on synthetic data, e.g., [45], also improve interpretability

on real data. To our awareness, ours is the first study providing such evidence.
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Chapter 8

Benchmarks, Algorithms, and Metrics

for Hierarchical Disentanglement1

In the previous chapter, we introduced a method to help (measure how well) humans un-

derstand generative model representations (e.g. autoencoders). We also provided evidence

that particular models (e.g. the b total correlation autoencoder) learn more interpretable

representations than baselines. This brings us closer to the vision outlined in Chapter 6; if

we can learn representations which are sufficiently interpretable to human domain experts

and which correspond sufficiently well to human domain experts’ existing conceptual

frameworks, then we can learn new discriminative models on top of those representations,

potentially using concept gradients or more general forms of explanation regularization.

However, we still have a major unsolved problem: how do we learn a “sufficiently

interpretable” representation that “corresponds sufficiently well” to the right concepts?

Are existing disentangled representation learning methods actually sufficient? Perhaps in

specific cases, but there are two general problems we will try to tackle in this chapter.

The first problem is that many disentanglement methods adopt the heuristic that the

“right representation” ought to be factorized; i.e. that each representation dimension should

1This chapter is based on Andrew Slavin Ross and Finale Doshi-Velez. Benchmarks, algorithms, and metrics
for hierarchical disentanglement. arXiv preprint arXiv:2102.05185, 2021.
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be statistically independent. Many have already argued this is a problematic assumption,

and even a problematic objective [145]; we will go into more details below.

The second, and potentially more pressing, problem (which we discussed in the con-

clusion of the previous chapter) is that for complicated enough instances x, we may need

z to be high-dimensional. If z has too many dimensions, then the cognitive load required

to understand it may be too great, even if the statistical independence objective makes it

possible to understand the effect of each dimension somewhat independently.

In human conceptual schemas (i.e. in the formulation of Sweller [1994]), we tend to

manage complexity by using hierarchical structure: schemas tend to contain a relatively

small number of elements that need to be understood simultaneously, even if those elements

themselves contain subschemas. What if representations could operate in a similar way?

In this chapter, we will introduce mixed discrete-continuous representations whose dimen-

sions are organized into trees such that dimensions in different branches cannot be active

simultaneously. In principle, this allows for representations that, despite having a potentially

high dimensionality Dz, only require users to consider relationships between O(log Dz)

dimensions at any given time (within coherent scopes defined by the discrete variables).

This kind of representation could allow for interpretability at realistic scale.

8.1 Introduction

Autoencoders aim to learn structure in data by compressing it to a lower-dimensional

representation with minimal loss of information. Although this has proven useful in many

applications [133], the individual dimensions of autoencoder representations are often

inscrutable, even when the underlying data is generated by simple processes. Motivated

by needs for interpretability [9, 155], fairness [51], and generalizability [26], as well as a

basic intuition that representations should model the data correctly, a subfield has emerged

which applies representation learning algorithms to synthetic datasets and checks how

well representation dimensions “disentangle” the known ground-truth factors behind the

dataset.
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Perhaps the most common disentanglement approach has been to learn flat, continuous

vector representations whose dimensions are statistically independent (and evaluate them

using metrics that assume ground-truth factors are independent), reasoning that factoriza-

tion is a useful proxy [184, 93, 45, 110]. However, this problem is not identifiable [145], and

it seems unlikely that continuous, factorized, flat representations are the optimal choice

for modeling many real-world generative processes, which are often highly structured.To

address aspects of this problem, some approaches generalize to partially discrete represen-

tations [102], or encourage independence only conditionally, based on hierarchies or causal

graphs [71, 227]. Almost all approaches require side-information, either about specific

instances or about the global structure of the dataset.

Our approach in this paper is ambitious: we introduce (1) a flexible framework for

modeling deep hierarchical structure in datasets, (2) novel algorithms for learning both

structure and structured autoencoders entirely from data, which we apply to (3) novel

benchmark datasets, and evaluate with (4) novel hierarchical disentanglement metrics. Our

framework is based on the idea that data may lie on multiple manifolds with different

intrinsic dimensionalities, and that certain (hierarchical groups of) dimensions may only

become active for a subset of the data.2 Though at first glance this approach seems it should

worsen, not improve, identifiability, our assumption of geometric structure also serves as

an inductive bias that empirically helps us learn representations that more faithfully (and

explicitly) model ground-truth generative processes.

8.2 Related Work

Though interest in disentanglement is longstanding [199, 50, 25], a relatively recent resur-

gence has focused on flat factorized representations. Ridgeway [2016] provide an influential

2As a concrete example, consider the problem of learning representations of medical phenotypes of patients
with and without diabetes mellitus, a complex disease with multiple types and subtypes [10]. Some underlying
factors of phenotype variation—as well as the intrinsic complexity of these variations—are likely specific to
the disease, its types, or its subtypes [7]. A representation that faithfully modeled the true factors of variation
would need to be deeply hierarchical, with some dimensions only active for certain subtypes.
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survey of such representations, arguing for their usefulness. Higgins et al. [2017] develop

b-VAE, which tries to encourage factorization in variational autoencoders (VAEs, Kingma

and Welling [2013]) by increasing the KL divergence penalty. Chen et al. [2018] and Kim and

Mnih [2018] factorize by directly penalizing the total correlation (TC) between dimensions.

Mixed discrete-continuous extensions are developed for KL by Dupont [2018] and TC by

Jeong and Song [2019].

Although these innovations are specific to flat representations, there has been work on

certain forms of hierarchy. Esmaeili et al. [2019] encourage different degrees of factorization

within and across subgroups, which can be nested. However, they only apply their method

in shallow contexts, and subgroups must be provided rather than learned from data.

Choi et al. [2020] learn mixed discrete-continuous representations where some continuous

dimensions are “public” in scope (and globally independent), while others are “private” to

a categorical (and conditionally independent of siblings). However, they do not support

deep hierarchies, and the structure of categorical, public, and private variables is provided

rather than learned. GINs [218] can infer the dimensionality of such categorical-specific

continuous dimensions groups, but still must be given the (shallow) categorical structure.

FineGAN [212] learns a kind of structure, but enforces a specific shallow hierarchy of

background, shape, and pose. Adams et al. [2010] model data with arbitrarily wide and

deep trees using Bayesian non-parametric methods. However, there is no explicit encoder

(representations are inferred via MCMC), and all features are binary. Our method attempts

to provide the best of all these worlds; from data alone, we learn autoencoders whose

representations have mixed discrete-continuous structure of arbitrary width and depth.

Our approach is also complementary to recent shifts in the disentanglement literature,

especially from causality researchers. Parascandolo et al. [2018] and Träuble et al. [2020] ar-

gue for learning representations that disentangle causal mechanisms rather than statistically

independent factors. Locatello et al. [2019] show that disentangling globally independent

factors is non-identifiable, and suggest a shift in focus to inductive biases, weak supervision,

and datasets with ground-truth interactions. The literature on learning representations with
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side-information is rich [157, 210], and recent advances in disentanglement with extremely

weak supervision are notable: Locatello et al. [2020] learn disentangled representations

given instance-pairs that differ only by sparse sets of ground-truth factors, and Klindt

et al. [2021] use similar principles to disentangle factors that vary sparsely over time. In this

work, we return to the problem of learning disentangled representations from data alone.

As our inductive bias to reduce (though not eliminate) non-identifiability, we assume the

data contains discrete hierarchical structure that can be inferred geometrically. Though this

introduces challenging new problems, it also creates opportunities to learn interpretable

global summaries of the data.

Other related approaches not directly in this line of research include relational au-

toencoders [233], which model structure between non-iid flat data, and graph neural

networks [56], which learn flat representations of structured data. In contrast, we model

structure within flat inputs. Also relevant are advances in object representations, such as slot

attention [147]. While this area has generally not focused on hierarchically nested objects, it

does learn structure and seamlessly handles sets; we view our method as complementary.

Finally, our hierarchy detection method is closely related to work in manifold learning.

We build on work in multiple- and robust manifold learning [153, 154], contributing new

innovations on top of them.

8.3 Hierarchical Disentanglement Framework

In this section, we outline our framework for modeling hierarchical structure in representa-

tions. In our framework, we associate individual data points with paths down a dimension

hierarchy (examples in Fig. 8.1). Dimension hierarchies consist of dimension group nodes

(shown as boxes), each of which can have any number of continuous dimensions (shown as

ovals) and an optional categorical variable (diamonds) that leads to other groups based on

its value. For any data point, we “activate” only the dimensions along its corresponding

path. Notation-wise, root(Z) denotes the group at the root of a hierarchy, and children(Zj)

denotes the child groups of a categorical dimension Zj. In the context of a dataset, for a
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dimension Zj or a dimension group g, on(Zj) or on(g) denotes the subset of the dataset

where that Zj or g is active.

This framework can be readily extended to support multiple categorical variables per

node (e.g. recursing on both segment halves in the timeseries dataset defined below) or

even DAGs, such that instances can be associated with directed flows down multiple paths.

For simplicity, however, we narrow our scope to tree structures in this work.

8.4 Hierarchical Disentanglement Benchmarks

For new frameworks, it is especially important to have synthetic benchmarks for which the

true structure is known and ground truth disentanglement scores can be computed. Below

we further describe the two benchmarks from Fig. 8.1.

Figure 8.1: Examples and ground-truth variable hierarchies for Spaceshapes and two different variants of
Chopsticks. Continuous variables are shown as circles and discrete variables are shown as diamonds. Discrete
variables have subhierarchies of additional variables that are only active for particular discrete values.

8.4.1 Spaceshapes

Our first benchmark dataset is Spaceshapes, a binary 64x64 image dataset meant to hierar-

chically extend dSprites, a shape dataset common in the disentanglement literature [158].

Like dSprites, Spaceshapes images have location variables x and y, as well as a categorical

shape with three options (in our case, moon, star, and ship). However, depending on shape,

we add other continuous variables with very different effects: moons have a phase; stars

have a sharpness to their shine; and ships have an angle. Finally, ships can optionally
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have a jet, which has a length (jetlen), but this is only defined at the deepest level of the

hierarchy. The presence of jetlen alters the intrinsic dimensionality of the representation;

it can be either 3D or 4D depending on the path. As in dSprites, variables are sampled from

continuous or discrete uniforms.

8.4.2 Chopsticks

Our second benchmark, Chopsticks, is actually a family of arbitrarily deep timeseries

datasets. Chopsticks samples are 64D linear segments. Each segment can have a uniform-

sampled slope and/or intercept; different Chopsticks variants can have one, the other,

both, or either but not both. For all variants, segments initially span the whole interval.

However, a coin is then flipped to determine whether to chop the segment, in which case we

add a uniform offset to the slope and/or intercept of the right half. We repeat this process

recursively up to a configurable maximum depth, biasing probabilities so that we have equal

probability of stopping at each level. Each chop requires increasing local dimensionality to

track additional slopes and intercepts. Although the underlying process is quite simple, the

structure can be made arbitrarily deep, making it a useful benchmark for testing structure

learning.

Although these datasets are designed to have clear hierarchical structure, in certain cases,

there are multiple dimension hierarchies that could arguably describe the same dataset. See

Fig. D.7 for more and §8.6.1 for how we handle them.

8.5 Hierarchical Disentanglement Algorithms

We next present a method for learning hierarchical disentangled representations from data

alone. We split the problem into two brunch-themed algorithms, MIMOSA (which infers

hierarchies) and COFHAE (which trains autoencoders).

8.5.1 Learning Hierarchies with MIMOSA
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Algorithm 1 MIMOSA(X)
1: Encode the data X using a smooth autoencoder to reduce the initial dimensionality.

Store as Z.
2: Construct a neighborhood graph on Z using a Ball Tree [170].
3: Run LocalSVD (Algorithm 3) on each point in Z and its neighbors to identify local

manifold directions.
4: Run BuildComponent (Algorithm 5) to successively merge neighboring points with

similar local manifold directions.
5: Run MergeComponents (Algorithm 6) to combine similar components over longer

distances and discard outliers.
6: Run ConstructHierarchy (Algorithm 7) to create a dimension hierarchy based on which

components enclose others.
7: return the hierarchy and component assignments.

The goal of our first algorithm, MIMOSA (Multi-manifold IsoMap On Smooth Autoencoder),

is to learn a hierarchy Ĥ from data, as well as an assignment vector Ân of data points to

hierarchy leaves. MIMOSA consists of the following steps (see Appendix for Algorithms 3-7

and complexity, and Fig 8.2 for an example):

Dimensionality Reduction (Algorithm 1, line 1): We start by performing an initial reduc-

tion of X to Z using a flat autoencoder. While we could start with Z = X, performing

this reduction saves computation as later steps (e.g. finding neighbors) scale linearly with

|Z|. Although this requires choosing |Z|, we find the exact value is not critical as long as

it exceeds the (max) intrinsic dimensionality of the data. We also find it important to use

differentiable activation functions (e.g. Softplus rather than ReLU) to keep latent manifolds

smooth; see Fig. D.1 for more.

Manifold Decomposition (Algorithms 3-6): We decompose Z into a set of manifold

“components” by computing SVDs locally around each point and merging neighboring

points with sufficiently similar subspaces. We then perform a second merging step over

longer lengthscales, combining equal-dimensional components with similar local SVDs along

their nearest boundary points and discarding small outliers, which we found was necessary

to handle interstitial gaps when two manifolds intersect. The core of this step is based
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on a multi-manifold learning method [153], but we make efficiency as well as robustness

improvements by combining ideas from RANSAC [73] and contagion dynamics [154]. The

merging step is a new contribution.

It bears emphasis that manifold decomposition, which groups points based on the

similarity of local principal components, is distinct from clustering, which groups points

based on proximity. On our benchmarks, even hierarchical iterative clustering methods like

OPTICS [12] will not suffice, as nearby points may lie on different manifolds.

Hierarchy Identification (Algorithm 7): We construct a tree by drawing edges from low-

dimensional components to the higher-dimensional components that best “enclose” them,

which we define using a ratio of inter-component to intra-component nearest neighbor

distances; we believe this is novel. We use this tree and the component dimensionalities to

construct a dimension hierarchy and a set of assignments from points to paths, which we

output.

Hyperparameters: Each of these steps has several hyperparameters, and we provide a full

listing and sensitivity study in §D.3. The one we found most critical was the minimum SVD

similarity to merge neighboring points.

8.5.2 Training Autoencoders with COFHAE

Our first stage, MIMOSA, gives us the hierarchy and assignments of data down it. In the

second stage, COFHAE (COnditionally Factorized Hierarchical AutoEncoder, Algorithms 2

and 8), we learn an autoencoder that respects this hierarchy via (differentiable) masking

operations that impose structure on flat representations.

Hierarchical Encoding: Instances x pass through a neural network encoder to an initial

vector zpre, whose dimensions correspond to all continuous variables in the hierarchy as

well as the one-hot encoded categorical variables. Categorical dimensions (denoted a0) pass

through a softmax with temperature t to softly mask zpre based on the hierarchy.
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Algorithm 2 COFHAE(X)
1: hierarchy, assignments = MIMOSA(X) # Algorithm 1
2: HAEq = init_hierarchical_autoencoder(hierarchy)
3: Dy = init_discriminator()
4: for x, a ⇠ minibatch(X, assignments) do
5: a0, z = HAEq .encode(x; t) # Algorithm 8
6: x0 = HAEq .decode(concat(a0, z)) # normal NN
7: z0 = copy(z)
8: for i = 1..|z0| do
9: shuffle z0:,i over minibatch indices where on(z:,i)

10: end for
11: Lq=Ân Lx(x0n, xn)+l1La(a0n, an)�l2 log Dy(zn)

1�Dy(zn)

12: Ly=Ân � log Dy(z0n)� log(1 � Dy(zn))
13: q = descent_step(q,Lq)
14: y = descent_step(y,Ly)
15: end for
16: return HAEq

Supervising Assignments: Hierarchical encoding outputs estimated assignments a0. We

add a penalty La(a0, a), weighted by l1, to make these close to MIMOSA values a.

Conditional Factorization: Kim and Mnih [2018] penalize the total correlation (TC) be-

tween dimensions of flat continuous representations z with two tricks. First, noting

that TC is the KL divergence between q(z) (the joint distribution of the encoded z) and

q̄(z) ⌘ ’|z|
j=1 q(zj) (the product of its marginals), they approximate samples from q̄(z) by

randomly permuting the values of each zi across batches [13]. Second, they approximate

the KL divergence between the two distributions using the density ratio trick [221] on an

auxiliary discriminator Dy(z), where KL(q(z)||q̄(z)) ⇡ log Dy(z)
1�Dy(z)

if Dy(z) outputs accu-

rate probabilities of z having been sampled from q̄. We adopt a similar approach, except

instead of permuting each zi across the full batch B, we only permute it where it is active,

i.e. B \ on(zi) (defined using the hardened version of the mask). This approximates a

hierarchical version of q̄(z) where each dimension distribution is a mixture of 0 and the

product of its active marginals. Dy(z) then lets us estimate the KL between this distribution

and q(z), which we penalize and weight with l2.

This approach presumes ground-truth continuous variables should be conditionally
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independent given categorical values, which is a major assumption. However, it is less strict

than the assumption taken by many disentanglement methods, i.e. that continuous variables

are independent marginally, and it may remain useful as an inductive bias.

8.6 Hierarchical Disentanglement Metrics

In this section, we develop metrics for quantifying how well learned representations and

hierarchies match ground-truth.

8.6.1 Desiderata and Invariances

Our goal in designing metrics is to measure whether we have learned the “right repre-

sentation,” both in terms of global structure and specific variable correspondences. In an

ideal world, we would measure whether a learned representation Z is identically equal

to a ground-truth V. However, most existing disentanglement metrics are invariant to

permutations, so that dimensions Vi can be reordered to match different Zj, as well as

univariate transformations, so that the values of Zj do not need to be identical to Vi. In the

case of methods like the SAP score [123], these univariate transformations must be linear,

but as the uniformity of scaling can be arbitrary, we permit general nonlinear transforma-

tions, as long as they are 1:1, or invertible. Also, in the hierarchical case, there are certain

ambiguities about the right vertical placement of continuous variables. For example, on

Spaceshapes, the phase, shine, and angle variables could all be “merged up” to a single

top-level variable whose effect changes based on shape. Alternatively, x and y position

could be “pushed down” and duplicated for each shape despite their analogous effects (see

Fig. D.7 for an illustration). Such “merge up” and “push down” transformations change

the vector representation, but leave local dimensionality and the group structure of the

hierarchy unchanged. We defer the problem of deciding the most natural vertical placement

of continuous variables to future work, and make our main metrics invariant to them.
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8.6.2 MIMOSA Metrics: H-error, Purity, Coverage

The first metric we use to evaluate MIMOSA is the H-error, which measures whether

learned hierarchy Ĥ has the same essential structure as the ground-truth hierarchy H. To

compute the H-error, we iterate over all possible paths p and p0 down both H and Ĥ, and

attempt to pair them based on whether the minimum downstream dimensionality of p

and p0 matches at each respective node. The number of unpaired paths in either hierarchy

is taken to be the H-error. This metric can only be 0 if both hierarchies have the same

dimensionality structure, but is invariant to the “merge up” and “push down” operations

described in §8.6.1.

The second MIMOSA metric is purity, which measures whether the assignments output

by MIMOSA match ground-truth. To compute purity, we iterate through points assigned to

each path p̂ in Ĥ, find the path p in H to which most of them belong, and then compute the

fraction of points in p̂ that belong to the majority p. Then we average these purity scores

across Ĥ, weighting by the number of points in p̂. This metric only falls below 1 when we

group together points with different ground-truth assignments.

The final metric we use to evaluate MIMOSA is coverage. Since MIMOSA discards

small outlier components, it is possible that the final set of assignments will not cover the

full training set. If almost all points are discarded this way, the other metrics may not be

meaningful. As such, we measure coverage as the fraction of the training set which is not

discarded. We note that hyperparameters can be tuned to ensure high coverage without

knowing ground-truth assignments.

8.6.3 COFHAE Metrics: R4 and R4
c Scores

Per our desiderata, we seek to check whether every ground-truth variable Vi can be mapped

invertibly to some learned dimension Zj. As a preliminary definition, we say that a learned

Zj corresponds to a ground-truth Vi over some set S ✓ R if a bijection between them exists;
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Figure 8.2: Illustration of the stages of MIMOSA for the depth-2 either version of Chopsticks (all colors
based on ground-truth assignments). MIMOSA learns an initial 4D softplus AE representation (top left),
decomposes it into lower-dimensional components of contiguous points with similar local SVD directions (top
right), merges components with similar edges across longer distances and discards outliers (bottom left), and
finally infers a dimension hierarchy (bottom right). In this case, correspondence to ground-truth is very close
(99.8% component purity, covering 93.7% of the training set, with the correct hierarchical relationships).
Examples for other datasets (without intermediate components) are shown in Figs. D.8-D.13 of the Appendix.

that is,

9 f (·) : S ! R s.t. f (Vi) = Zj and f�1(Zj) = Vi (8.1)

We say that Z disentangles V if all Vi have a corresponding Zj. To measure the extent to

which bijections exist, we can simply try to learn them (over random splits of many paired

samples of Vi and Zj). Concretely, for each pair of learned and true dimensions, we train

univariate models to map in both directions, compute their coefficients of determination
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(R2), and take their geometric mean:

f ⌘ min
f2F

Etrain
⇥
( f (X)� Y)2⇤

R2(X!Y) ⌘ Etest


1 � Â( f (X)� Y)2

Â(E[Y]� Y)2

�

R2(X$Y) ⌘
q
bR2(X!Y)c+bR2(Y!X)c+,

(8.2)

where we average over train/test splits (we use 5), assume F is sufficiently flexible to contain

the optimal bijection (we use gradient-boosted decision trees), and assume our dataset is

large enough to reliably identify f 2 F . In the limit, R2(X$Y) can only be 1 if a bijection

exists, as any region of non-zero mass in the joint distribution of X and Y where this is

false would imply E[( f (X)� Y)2] > 0 or E[( f (Y)� X)2] > 0. In the special case that Y is

discrete rather than continuous, we use classifiers for f and accuracy instead of R2, but the

same argument holds.

To measure whether a set of variables Z disentangles another set of variables V, we check

if, for each Vi, there is at least one Zj for which R2(Vi $ Zj) = 1:

R4(V, Z) ⌘
1
|V|

Â
i

max
j

R2(Vi $ Zj), (8.3)

We call this the “right-representation” R2, or R4 score. Note that this metric is related to the

existing SAP score [123], except we allow for nonlinearity, require high R2 in both directions,

and take the maximum over each score column rather than the difference between the top

two entries (which avoids assuming ground-truth is factorized).

Although R4 is useful for measuring correspondence between sets of variables that are

both always active, it does not immediately apply to hierarchical representations unless

inactive variables are represented somehow, e.g. as 0 (an arbitrary implementation decision

that affects R2 by changing E[Y]). It also lacks invariance to merge-up and push-down

operations. Instead, we seek conditional correspondence between Vi and a set of dimensions in
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Z, defined as

for all Vi 2 on(Vi) 9Zi = {Zj, Zk, . . .} s.t.

(a)Vi corresponds to Zj over on(Vi) \ on(Zj),

(b) on(Zj) \ on(Zk) = ∆ for all j 6= k, and

(c)
S

z2Zi
on(z) = on(Vi),

(8.4)

or rather that we can find some tiling of on(Vi) into regions where it corresponds 1:1 with

different Zj which are never active simultaneously. This allows for one Zj to correspond to

non-overlapping elements of V (e.g. merging up), as well as for one Vi to be modeled by

non-overlapping elements of Z (e.g. pushing down).

We can then formulate a conditional R4
c score which quantifies how closely conditional

correspondence holds:

R2
c(Vi, g) ⌘max

✓
max

j2g

⇣
R2�Vi$Zj

��on(Vi) \ on(g)
�
,

Â
g02children(Zj)

R2
c(Vi, g0)

|on(Vi) \ on(g0)|
|on(Vi)|

⌘◆
,

for a dimension group g; the overall disentanglement is:

R4
c(V$Z) ⌘

1
|V|

|V|

Â
i=1

R2
c(Vi, root(Z)). (8.5)

In the special case that V and Z are flat, R4
c reduces to R4. We note that even for flat

representations, the R4 score may be a useful measure of disentanglement when ground-

truth variables are not factorized.

8.7 Experimental Setup

Benchmarks: We ran experiments on nine benchmark datasets: Spaceshapes, and eight

variants of Chopsticks (varying slope, intercept, both, and either at recursion depths

of 2 and 3). See §8.4 for more details, and Fig. D.14 for preliminary experiments on noisy

data.
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Algorithms: In addition to COFHAE with MIMOSA, we trained the following baselines:

autoencoders (AE), variational autoencoders [113] (VAE), the b-total correlation autoencoder

[45] (TCVAE), and FactorVAE [110]. We also ran COFHAE ablations using the ground-truth

hierarchy and assignments, testing all possible combinations of loss terms and comparing

conditional vs. marginal TC penalties; results are in Fig. 8.4. See §D.1 for training and

model details.

Metrics: To evaluate hierarchies, we computed purity, coverage, and H-error (§8.6.2).

Results are in Table 8.1. To measure disentanglement, we primarily use R4
c (§8.6.3); results

for all datasets and models are in Fig. 8.3. We also compute the following baseline metrics:

the SAP score [123] (SAP), the mutual information gap [45] (MIG, estimated using 2D

histograms), the FactorVAE score [110] (FVAE), and the DCI disentanglement score [66]

(DCI). Most implementations were adapted from disentanglement_lib [145]. We also

compute our marginal R4 score. Results across metrics are shown for a subset of datasets

and models in Fig. 8.5.

Hyperparameters: COFHAE is only given instances X, which complicates cross-validation.

However, we can still tune parameters to ensure assignments a0 match MIMOSA outputs

a and reconstruction loss for x is low (which can fail to happen if the adversarial term

dominates). Over a grid of t in {
1
2 , 2

3 , 1}, l1 in {10, 100, 1000}, and l2 in {1, 10, 100},

we select the model with the lowest training reconstruction loss Lx from the 1
3 with the

lowest assignment loss La. For MIMOSA, hyperparameters can be tuned to ensure high

coverage (purity and H-error require side-information); see §D.3 for more. For b-TCVAE

and FactorVAE, we show results for b=5 and g=10, but test both across {5, 10, 25, 50} in

Fig. D.5.
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Figure 8.3: Hierarchical disentanglement results for representation learning methods (baselines and COFHAE
+ MIMOSA) over all nine datasets. COFHAE almost perfectly disentangles ground-truth on the six simplest
versions of Chopsticks, with some degradations on the two most complex versions (with very deep hierarches)
and on Spaceshapes (with a shallower hierarchy, but higher-dimensional inputs). Baseline methods were
generally much more entangled, though b-TCVAE is competitive on Spaceshapes.

Figure 8.4: Ablation study for COFHAE on the depth-2 both version of Chopsticks (over 5 restarts).
Hierarchical disentanglement is low for flat AEs (Flat); adding the ground-truth hierarchy H improves it
(Hier H), as does also adding supervision for ground-truth assignments A (H+A). Adding a FactorVAE-style
marginal TC penalty (H+A+TC(Z)) does not appear to help disentanglement, but making that TC penalty
conditional (H+A+TC(Z|on), i.e. COFHAE) brings it close to the near-optimal disentanglement of a
hierarchical model whose latent representation is fully supervised (H+A+Z). However, the hierarchical
conditional TC penalty fails to produce this same disentanglement without any supervision over assignments
(H+TC(Z)).
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Table 8.1: MIMOSA results.

MIMOSA Chopsticks, depth=2 Chopsticks, depth=3 Space-
Metric inter slope both either inter slope both either shapes
Purity 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 .98±0.0 .95±0.0 .94±0.0 .93±0.0 1.0±0.0

Coverage .99±0.0 .99±0.0 .96±0.0 .93±0.0 .98±0.0 .98±0.0 .82±0.01 .75±0.01 1.0±0.0
H-error 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 2.6±1.34 0.0±0.0

MIMOSA results across all datasets, with means and standard deviations across 5 restarts. In general,
MIMOSA components contained points only from single ground-truth sets of paths (purity), were inclusive of
most points in the training set (coverage), and resulting in perfectly accurate hierarchies (H errors), with the
greatest or only exception being the Chopsticks depth-3 either dataset (where we tended to recover only 12
of its 14 possible paths).

8.8 Results and Discussion

MIMOSA consistently recovered the right hierarchies. Per Table 8.1, we consistently

found the right hierarchy for all datasets except depth-3 either-Chopsticks, but even there

results were close, generally recovering 12 of 14 possible hierarchy paths (see Fig. D.13 for

more details). Purity and coverage were also high, often near perfect as in Spaceshapes or

depth-2 Chopsticks.

COFHAE significantly outperformed baselines. Per Fig. 8.3, COFHAE R4
c scores were

near-perfect for 6 out of 9 datasets, and better than baselines on all. On Spaceshapes and

the depth-3 either and both versions of Chopsticks, scores were slightly worse. Part of this

suboptimality could be due to non-identifiability. For Spaceshapes and the both versions of

Chopsticks, dimension group nodes contain multiple continuous variables, which even con-

ditionally can be modeled by multiple factorized distributions [145]. However, optimization

issues could also be at fault, as we do not see suboptimal R4
c on Chopsticks until a depth of

3, and even supervised H+A+Z models occasionally fail to converge on Spaceshapes. Kim

and Mnih [2018] note that the relatively low-dimensional discriminator used by FactorVAE

is easier to optimize than the generally high-dimensional discriminators used in GANs,

which are notoriously tricky to train [160]. In our case, flattened hierarchy vectors can be

high-dimensional (e.g. Fig. D.15), and in any given batch, instances corresponding to differ-
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Figure 8.5: Comparison of disentanglement metrics across two datasets and four models. Only R4 and R4
c

correctly and consistently award near-optimal scores to the supervised H+A+Z model.

ent paths down the hierarchy may have different numbers of samples (potentially requiring

larger batch sizes or stratified sampling to ensure sufficient coverage). Finally, alongside

non-identifiability and optimization issues, MIMOSA errors (e.g. merge-up/push-down

differences for Spaceshapes and suboptimal purity and coverage for Chopsticks) also may

play a role, as evidenced by performance improvements in our full COFHAE ablations in

Fig. D.4. Despite all of these issues, COFHAE is still closer to optimal than any of our

baseline algorithms.

R4
c provides more insight into disentanglement than baselines. One way to evaluate an

evaluation metric is to test it against a precisely known quantity. In this case, we know

the H+A+Z model, whose encoder is supervised to match ground-truth, should receive a

near-perfect score. The only metrics to do this consistently are R4 and R4
c . Note that the DCI

disentanglement score, based on the entropy of normalized feature importances from an

estimator predicting single ground-truth factors from all learned dimensions, comes close.

Intuitively, this metric could behave similarly to R4 if its estimator was trained to be sparse

(placing importance on as few dimensions as possible). However, using R2s of univariate
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estimators is more direct, and also incorporates information from the DCI informativeness

score.

Another way to evaluate an evaluation metric is to test whether quantitative differences

capture salient qualitative differences. To this point, specifically to compare R4 and R4
c , we

consider several examples in Fig. D.6 and Fig. 8.6. First, we see that for the Spaceshapes

COFHAE model in Fig. D.6c, its R4
c score (0.89) is higher than its R4 (0.79). This increase is

due to the fact that R4 penalizes the “push-down” differences (§8.6.1) between the learned

and true factors representing x and y position, while R4
c is invariant to them. However,

the overall increase is less dramatic than one might expect due to modest decreases in

correspondence scores for other dimensions (e.g. 0.98!0.89 for jetlen), which occur

because R4
c is not biased by spurious equality between dimensions which are both inactive.

Another example of a difference between R4 and R4
c (illustrating invariance to “merging up”

rather than “pushing down”) is for the Spaceshapes b-TCVAE in Fig. D.6b. In this case,

histograms show that one b-TCVAE variable (Z3) corresponds closely to both moon phase

and star shine (and to a lesser extent, jetlen), only one of which is active at a time. The R4

score (0.47) assigns low scores to these correspondences, but R4
c (0.69) properly factors them

in.

COFHAE and MIMOSA subcomponents improve performance. Though COFHAE con-

tains many moving parts, results in Fig. 8.4 and Fig. D.4 suggest they all count. Autoencoders

only achieve optimal disentanglement if provided with the hierarchy, assignments, and

a conditional (not marginal) penalty on the TC of continuous variables; no partial subset

suffices. In the Appendix, Fig. D.3 shows ablations and sensitivity analyses for MIMOSA

that validate its subcomponents are important as well.

8.8.1 Visualizing Hierarchical Representations

Although not the focus of this work, we can visualize (or evaluate the interpretability of)

hierarchical representations by straightforward extensions of the methods from Chapter 7. In
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Figure 8.6: Hierarchical latent traversal plot of the best-performing Spaceshapes COFHAE model (R4
c = 0.89).

Individual latent traversals show the effects of linearly sweeping each active dimension from its 1st to 99th
percentile value (center column shows the same input with intermediate values for all active dimensions).
Consistent with Fig. D.6c, the model is not perfectly disentangled, though primary correspondences are clear:
star shine is modeled by Z5, moon phase is modeled by Z8, ship angle is modeled by Z10, ship jetlen is
modeled by Z12, and (x, y) are modeled by (Z3, Z4), (Z6, Z7), and (Z11, Z9) respectively for each shape.

Figure 8.6, we illustrate how to visualize hierarchical representations with latent traversals,

while in Figure 8.7, we show screenshots of interactive reconstruction. A live demo of

hierarchical interactive reconstruction can be accessed here.

Figure 8.7: Hierarchical interactive reconstruction example on Spaceshapes (close-up on sliders and output
image). Based on selected radio buttons, different groups of inputs appear, which can include both sliders and
more radio buttons.

141

http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=spaceshapes&skip_instructions=1&anonymized=1&models=best-learned


8.9 Conclusion

In this work, we introduced the problem of hierarchical disentanglement, where ground-

truth representation dimensions are organized into a tree and activated or deactivated based

on the values of categorical dimensions. We presented benchmarks, algorithms, and metrics

for learning and evaluating such hierarchical representations.

There are a number of promising avenues for future work. One is extending the method

to handle a wider variety of underlying structures, e.g. non-hierarchical dimension DAGs,

or integrating our method with object representation techniques to better model generative

processes involving ordinal variables or unordered sets [147]. Another is to better solve or

understand hierarchical disentanglement as we have already formulated it, e.g. by improving

robustness to noise, or providing a better theoretical understanding of identifiability and

when we can guarantee methods will succeed. Finally, there are ample opportunities to

apply these techniques to real-world cases that we expect to have hierarchical structure,

such as causal inference, patient phenotype, or population genetics datasets.

More generally, we feel it is important for representation learning to move beyond flat

vectors, and work towards explicitly modeling the rich structure contained in the real world.

For a long time, many symbolic AI and cognitive science researchers have argued that AI

progress should be evaluated not by improvements in accuracy or reconstruction error,

but by how well we can build models that build their own interpretable models of the

world [130]. Our work takes steps in this direction.
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Part IV

Conclusion
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Chapter 9

Conclusion

9.1 Summary of Contributions

In this dissertation, we argued that many prediction problems are ambiguous, and that

machine learning models trained to solve them tend to be right (on the training distribution)

but for the wrong reasons (implying fragility to test-time shifts in p(x), even if p(y|x) is

unchanged). We then argued that we might significantly improve robustness (and learn

models which are right for better reasons) by incorporating human domain knowledge

into model objective functions. In Part II, we used input gradient penalties to accomplish

this task in a variety of contexts, demonstrating we could bias models towards learning

particular implicit decision rules (Chapter 3), improve the diversity (and interpretability)

of ensembles (Chapter 4), and improve the adversarial robustness (and interpretability) of

convolutional neural networks (Chapter 5).

Although more recent approaches based on aggregating gradients over paths [70] or

optimizing inner gradient-based objectives over regions [69] perform better, the success of

these approaches still supports our primary point: we can learn models which are more

interpretable, robust, and aligned with expert knowledge by optimizing not just model

predictions, but how predictions change with meaningful changes to our inputs.

However, we also argued that certain kinds of expert knowledge are difficult to translate
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into “meaningful changes to our inputs,” and instead are best expressed in terms of abstract

(and hierarchically organized) concepts [107]. To handle these cases, we argued that it might

be necessary to learn more human-compatible representations of our data. Therefore, in

Part III, we made two contributions towards learning such representations: we developed

a method for measuring representation interpretability (Chapter 7), as well as methods

and metrics for learning and evaluating hierarchical representations (Chapter 8), which we

believe could be significantly more interpretable and true to the data than baselines.

Methodologically, we took pains in both parts to ensure that whenever we evaluated

explanations or interpretability, we also had some way of comparing our evaluations to

ground-truth. For example, in Chapter 3, we knew which features in our synthetic dataset

actually mattered for prediction, and we knew that models fooled by decoy datasets were

sensitive to the corresponding confounds. In much of Chapter 7, we knew which models

were most and least interpretable beforehand, because they were constructed with the

express purpose of justifying such assumptions—and even then we still cross-checked

our conclusions with many different metrics from user studies. Interpretability research

has many methodological and epistemological pitfalls [194, 4, 6, 85, 34], but we hope our

evaluation strategies helped us avoid at least some of them.

9.2 Future Directions

To close, we will sketch out several directions for future work.

Combining the chapters: In the immediate term, there is more we could do to combine

the contributions of our chapters. By adding dropdowns and checkboxes to the interactive

reconstruction interface we presented in Chapter 7, we could easily apply the same inter-

pretability measurement technique to the kinds of representations we learned in Chapter 8

(see an example here), allowing us to test our hypothesis that they might be more inter-

pretable. We could also then attempt to use the representations we learn and explain with

the methods from Part III to help domain experts encode knowledge in situations analogous
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to those of Part II, in a grand study that utilizes every chapter of this dissertation.

However, creating an interface to integrate all these disparate ML methods seems

challenging from an HCI perspective, and there are still limits on the kinds of knowledge we

can encode with them, even with perfect hierarchical disentangled representations (which

might themselves need knowledge to identify [145]). Many long-term challenges remain.

Interfaces for human-AI intersubjectivity: In this general spirit, though, Olah et al. [2018]

envision a design space of “interpretability interfaces” with a formal grammar for expressing,

exploring, and exploiting explanations. They visualize this design space in a grid of

relationships between different “substrates” of the design, which include groups of neurons,

dataset examples, and model parameters—the latter of which presents an opportunity

“to consider interfaces for taking action in neural networks.” If human-defined concepts,

disentangled representations, or other forms of explanation are included as additional

substrates, one can start to imagine a very general framework for expressing priors or

constraints on relationships between them.

Human Space Model Space

Labels

Concepts

Examples

Features

resembles belongs torelates to

supports mediates supports

negates

Humans write soft rules relating examples, 
features, intermediate concepts, and labels

Interpretability backend translates rules into 
loss functions and network architectures

Inputs

Regularization

Explanation

Weights

Outputs

Latent
Reprs.

Autoencoders

Primary objectives 
(cross-entropy, quadratic loss)

Secondary objectives 
(disentanglement, gradient 
penalties)

Sub-

concepts

Figure 9.1: Schematic diagram of an interpretability interface.

How would humans actually express these kinds of objectives? One interface worth

emulating could be that introduced by popular libraries for weak supervision [181] or

probabilistic soft logic [18]. In these frameworks, users can specify “soft” logical rules for
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labeling datasets or constraining relationships between atoms and substrates of a system,

whose weights are inferred by the framework. While these inference problems are nontrivial,

and in general there may be complex interactions between rules that are difficult to capture,

the interface these libraries expose to users is expressive and potentially worth emulating in

an interpretability interface. For example, we could imagine writing soft rules relating:

• dataset examples to each other (e.g. these examples should be conceptually similar

with respect to a task)

• dataset examples to concepts (e.g. these are examples of a concept)

• features to concepts (e.g. this set of features is related to this concept, this other set is

not; in this specific case, these features contribute positively)

• concepts to predictions (e.g. the presence of this concept makes this prediction more

or less likely, except when this other concept is present)

• concepts to concepts (e.g. this concept is hierarchically nested within another, or only

conditionally active)

These rules could be “compiled” into architectural constraints or additional energy terms in

component model loss functions. We present a schematic diagram of how a system like this

might work in Figure 9.1.

Many ML and HCI challenges would need to be solved in order to build such a system,

especially if it should be useful. The bulk of the work might lie in attempting to align

human concepts with representations. If 1:1 mappings between human concepts and latent

representations do not emerge naturally from disentanglement methods, even allowing

for hierarchical relationships, steps could be taken to optimize model representations to

better match human understanding (e.g. with partial supervision) or to help humans

better understand model representations (e.g. with interactive or feature visualization).

This process of reaching user-model intersubjectivity might require multiple stages of

identification and refinement, but seems possible in principle. And perhaps arriving at a
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shared conceptual framework for understanding a problem is where the work of teaching

and learning ought to lie, regardless of whether the teachers and learners are human.

Static concepts vs. dynamic narratives: We began by stating that “the motivation for this

dissertation is easiest to express with a story.” That is no accident. We, as human beings,

rely heavily on stories or narratives in our explanations for external phenomena—as well

as for our own lives and experiences [107, 161]. Stories (with an arrow of time) are also

essential to causality [177]. For machine learning models to make predictions for the right

reasons, their reasoning may need to incorporate dynamic temporal structure alongside static

hierarchical structure.

9.3 Final Thoughts

Building on Keil [2006], Doshi-Velez and Kim [2017] argue that interpretability is necessary

when our systems have a certain incompleteness. In the context of this dissertation, we have

considered the kind of incompleteness that results from ambiguity in a dataset. When

datasets do not fully specify their decision boundaries, we have freedom to learn many

models that could accurately classify them. The vast majority will be right in training

but for the wrong reasons, implying vulnerability to distribution shifts. Unless we can be

certain such shifts will not occur in practice, we must be extremely careful, and take steps

to identify and mitigate as many problems as possible (if we still must use ML at all).

The promise of machine learning to improve human lives is great, but so is its peril.

Machine learning models are being used in more and more critical situations, such as bail

determination [11] and child maltreatment risk screening [48], without much oversight or

awareness of their fragility. Even if the models were “correct,” many of these applications

would remain horribly wrong [201, 67, 163]. In this thesis, we presented methods and ideas

to help practitioners encode domain knowledge into machine learning objective functions.

We believe good could result from learning models that are right for the right reasons, but

only if they are used for the right reasons.
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Appendix A

Appendix to Chapter 3

Figure A.1: Longer 20 Newsgroups example. Blue supports the predicted label, orange opposes it, and
opacityi = |wi|/ max |w|. LIME and input gradients never disagree, but gradients may provide a fuller
picture of the model’s behavior because of LIME’s limits on features and samples (especially for long documents).
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Figure A.2: Even longer 20 Newsgroups example that highlights LIME’s limitations on long documents.
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Appendix B

Appendix to Chapter 4

B.1 Imposing Penalties over Manifolds

In the beginning of our derivation of CosIndepErr (Equation 4.4), we assumed that locally,

Ne(x) ⇡ Be(x). However, in many cases, our data manifold Wx is much lower dimensional

than RD. In these cases, we have additional degrees of freedom to learn decision boundaries

that, while locally orthogonal, are functionally equivalent over the dimensions which matter.

To restrict spurious similarity, we can project our gradients down to the data manifold.

Given a local basis for its tangent space, we can accomplish this by taking dot products

between r f and rg and each tangent vector, and then use these two vectors of dot products

to compute the cosine similarity in Equation 4.6. More formally, if J(x) is the Jacobian

matrix of manifold tangents at x, we can replace our regular cosine penalty with

ManifIndepErr( f , g) ⌘ E
⇥
cos2(r f kJ(x),rgkJ(x)),

⇤

where r f kJ(x) = r f (x)| J(x),

rgkJ(x) = rg(x)| J(x)

(B.1)

An example of this method applied to a toy example is given in Figure B.1. Alternatively,

if we are using projected gradient descent adversarial training to minimize the original

formulation in Equation 4.2, we can modify its inner optimization procedure to project
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input gradient updates back to the manifold.

Figure B.1: Synthetic 2D manifold dataset (randomly sampled from a neural network) embedded in R3, with
decision boundaries shown in 2D chart space (top) and the 3D embedded manifold space (bottom). Naively
imposing LIT penalties in R3 (middle) leads to only slight differences in the chart space decision boundary,
but given knowledge of the manifold’s tangent vectors (right), we can recover maximally different chart space
boundaries.

For many problems of interest, we do not have a closed form expression for the data

manifold or its tangent vectors. In this case, however, we can approximate one, e.g. by

performing PCA or training an autoencoder. Local independence training can also simply

be used on top of this learned representation directly.

B.2 Additional Figures
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Figure B.2: Violin plots showing marginal distributions of ICU mortality input gradients across heldout data
for 5-model ensembles trained on the n = 1000 slice (top 5 plots) and restarts on the full dataset (bottom).
Distributions for each model in each ensemble are overlaid with transparency in the top 4 plots. From the top,
we see that restarts and NCL learn models with similar gradient distributions. Bagging is slightly more varied,
but only LIT (which performs significantly better on the prediction task) exhibits significant differences between
models. When LIT gradients on this limited data task are averaged (second from bottom), their distribution
comes to resemble (in both shape and scale) that of a model trained on the full dataset (bottom), which may
explain LIT’s stronger performance.

Figure B.3: Companion to Figure 4.8 showing differences in the distributions of input gradients for other
2-model ensemble methods. Bagging is largely identical to random restarts, while NCL exhibits a sharp
transition with l.
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Figure B.4: Full ensemble AUC and accuracy results by method and ensemble size. LIT usually beats baselines
when train 6= test, but the optimal ensemble size (cross-validated in the main paper, but expanded here) can
vary.

Figure B.5: Empirical relationship between our similarity metric (or penalty) rcos2 and more classic measures
of prediction similarity such as error correlation (rav) and the Q-statistic (Qav), with one marker for every
method, l, dataset, split, ensemble size, and restart. In general, we find meaningful relationships between
rcos2 and classic diversity metrics, despite the fact that rcos2 does not require ground-truth labels. The bottom
row of this figure also shows that LIT models (green) tend to have lower and more widely varying Qav and rav,
indicating greater ability to control heldout prediction diversity through training l. We also measured the
interrater agreement k but we found the results almost identical to rav and omit them to save space.
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Appendix C

Appendix to Chapter 7

C.1 Additional Model Details

In this section, we present additional background and details about the representation

learning models considered.

C.1.1 Loss Functions.

Autoencoders [2] (AEs) are trained simply to compress and reconstruct x:

LAE(x) = L(x, dec(enc(x))),

where L is an individual example reconstruction loss. We used cross-entropy (Bernoulli

negative log-likelihood) for dSprites and MNIST and mean-squared error (Gaussian negative

log-likelihood) for Sinelines.

Ground-truth models (GTs) are trained equivalently to the autoencoder, except we omit

the encoder and instead provide ground-truth factors z alongside x:

LGT(x, z) = L(x, dec(z))

Note that on Sinelines, we did not actually train the GT model because in that case, it was

simple to implement in closed form. It might have been possible to implement the GT
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dSprites model this way as well, but since the original generating code is not available in

the dataset repository [158], we opted for a model.

Variational autoencoders [113] (VAEs) are similar to autoencoders, except that enc(x)

outputs not a single value, but a distribution over z. The VAE training objective includes

an expectation of the reconstruction error over this distribution, as well as a regularization

term meant to ensure that enc(x) stays close to a prior p(z) (in our case, an isotropic unit

Gaussian):

LVAE(x) = Ez⇠enc(x) [L(x, dec(z))] + KL(enc(x)||p(z))

Note that the expectation is generally approximated in training with a single sample.

b-total correlation autoencoders (b-TCVAEs, abbreviated further to TC) [45] are identical

to VAEs, except that an additional penalty is applied to the total correlation between

representation dimensions:

LTC(x) = LVAE(x) + (b � 1)TC(enc(x)),

where for some joint distribution q(z), the total correlation TC(q(z)) is equivalent to the KL

divergence between q(z) and the product of its marginals, KL(q(z)||’j q(zj)). Penalizing

total correlation reduces statistical dependence between dimensions and is thought to

improve interpretability. We use an approximation of this objective developed by Chen et al.

[45] but there are others, e.g. Kim et al. [110]. For all experiments, we used b = 10.

Our semi-supervised (SS) variant of the b-total correlation autoencoder augments its

encoded representation z with an additional categorical dimension where we explicitly

provide the class label y:

LSS(x, y) = Ez⇠enc(x) [L(x, concat(y, dec(z)))]

+ KL(enc(x)||p(z))

+ (b � 1)TC(enc(x))

By providing y as side-information during training, we effectively disentangle digit identity

from the continuous part of the representation z, making the SS slightly more similar to
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ground-truth (even though there is no complete ground-truth for MNIST, the dataset we

consider). The SS model’s representation of digit style may still be entangled, but hopefully

less so than other models (as the SS model still employs all the same tricks as the TC model).

Finally, InfoGAN [46] (IG) is a generative adversarial network [80] trained to reach

equilibrium between two losses: a discriminator attempting to distinguish real from fake

images, and generator attempting to create images x that fool the discriminator from a

latent code z (with maximal information between “interpretable” components of z and the

generated image). We refer to the original citation for more details [46].

C.1.2 Training Details.

All autoencoder models are trained in Tensorflow with the Adam optimizer [112], with a

batch size of 64 or 128 (for MNIST vs. others) and for the minimum number of epochs

necessary to surpass 100,000 iterations. Matching Burgess et al. [35], the learning rate was

set to 0.0005 for dSprites and its Tensorflow-default value of 0.001 for MNIST and Sinelines.

InfoGANs were trained using an implementation from the Tensorpack library [237]. See

https://github.com/dtak/interactive-reconstruction for code.

C.2 Distance Metrics and Thresholds

In this section, we describe our choices of distance metric d(x, x0) and threshold distance e for

each of the three datasets. In general, for all three datasets, we used metrics that measured

the fraction of disagreeing dimensions, with dataset-specific definitions of disagreement.

C.2.1 Sinelines

For Sinelines, we defined distance as the fraction of inputs that disagreed by more than 0.5

(approximately 2% of the range of x):

dSinelines(x, x⇤) , 1
64

64

Â
i=1

(|xi � x⇤i | > 0.5) (C.1)
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This metric has the advantage of being between 0 and 1, which allows us to visualize users’

proximity to solving each problem with a progress bar (after subtracting the distance from

1). We set the threshold distance value e to 0.1 (which we visualized as a 90% agreement

target).

C.2.2 dSprites

For dSprites, a BW image dataset where a large fraction of pixels are always within almost

any threshold value due to black backgrounds, we instead used L1 distance normalized

by the total difference away from black backgrounds (which corresponds to Bray-Curtis

similarity [24], and can be seen as a relaxation of intersection-over-union):

ddSprites(x, x⇤) , Âi |xi � x⇤i |
Âi |xi|+ |x⇤i |

(C.2)

We again used the threshold of e = 0.1 and visualized progress in terms of a 90% alignment

target.

C.2.3 MNIST

For MNIST, we initially tried the same distance metric as with dSprites, but found in pilot

experiments that the soft relaxation of intersection-over-union led to confusing behavior

with highly regularized architectures like the b-total correlation autoencoder, which often

have relatively gradual transitions between black and white portions of generated images.

Instead, we opted to binarize autoencoder outputs in our visualization and use an exact

intersection-over-union similarity metric:

dMNIST(x, x0) , 1 � Âibxie ^ bx0ie
Âibxie _ bx0ie

, (C.3)

with a threshold of e = 0.25 (visually presented as an alignment target of 75%). We chose

this threshold by asking pilot users to align x and x0 without a target threshold and verbally

indicating when they felt they were “far away” vs. “close enough,” and then finding a value

that consistently separated those two states across examples.
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C.3 Additional Screenshots

In Figures C.1, C.2, and C.3, we show additional screenshots for more tasks, models,

and datasets. We also showcase the instructional practice questions, where users were

shown a simple “circles” dataset with just two factors of variation (radius and fore-

ground/background color). Note that all of the tasks are available at http://hreps.

s3.amazonaws.com/quiz/manifest.html.

Table C.1: Labels assigned to MNIST Dz = 10 representation dimensions.

Model Dimension User-Assigned Labels

AE10

Continuous 1 "cross"

Continuous 4 "intensity", "0-1"

Continuous 7 "thickness"

TC10

Continuous 1 "numbers", "reflect but not really", "number?", "little"

Continuous 2 "x", "ignore", "nothing", "no"

Continuous 3 "thickness", "numb"

Continuous 4 "expands", "numb"

Continuous 5 "makes things thick", "thickness", "thicker"
Continuous 6 "x", "ignore", "nothing", "nothing", "no"

Continuous 7 "x", "ignore", "nothing", "nothing", "no"

Continuous 8 "tilt on center", "rotation", "orient"
Continuous 9 "squish into the center", "numb"

Continuous 10 "six", "stretch", "0"

SS10

Discrete 1 "Number", "Number", "number"
Continuous 1 "spirals", "lengthening", "width"

Continuous 2 "curviness", "y bubble"

Continuous 3 "x", "ignore", "nothing", "no"

Continuous 4 "thickness", "thick", "thickness", "thick", "thickness"
Continuous 5 "rotation"

Continuous 6 "x", "ignore", "nothing", "little"

Continuous 7 "x", "moves a thing", "no"

Continuous 8 "tilt", "squishes"

Continuous 9 "semi tilt", "rotation"
Continuous 10 "x", "migrates one thing", "nothing", "little"

All labels assigned to Dz = 10 models by participants in the MNIST thinkaloud study. Bold font shows
labels experimenters identified as consistent between participants, with dimensions that had little effect on
representations due to TC regularization shown in gray. TC and SS models had more labels (and more
consistent labels) than AEs.
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Figure C.1: Traversals (left), exemplars (middle), and interactive reconstruction (right) for practice question
problem.

Figure C.2: Sinelines traversals for a random dimension of the AE (left), VAE (middle), and GT model (right).

Figure C.3: Sinelines exemplars for a random dimension of the AE (top), VAE (middle), and GT model
(bottom).
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Appendix D

Appendix to Chapter 8

D.1 Training and Architecture Details

For Chopsticks, our encoders and decoders used two hidden layers of width 256, and our

loss function Lx was defined as a zero-centered Gaussian negative log likelihood with

s = 0.1. For Spaceshapes, encoders and decoders used the 7-layer convolutional architecture

from Burgess et al. [2018], and our loss function Lx was Bernoulli negative log likelihood.

All models were implemented in Tensorflow. Code to reproduce experiments will be made

available at https://github.com/dtak/hierarchical-disentanglement.

For both models, the assignment loss La was set to mean-squared error, but only for

assignments that were defined. This was implemented by setting undefined assignment

components to -1, and then defining La(a, a0) = Âi [a0i�0](ai � a0i)
2.

All activation functions were set to ReLU (max(0, x)), except in the case of the initial

smooth autoencoder, where they were replaced with Softplus (ln(1 + ex)). This initial

autoencoder was trained with dimensionality equal to one plus the maximum intrinsic

dimensionality of the dataset. We investigate varying this parameter in Fig. D.3 and find

it can be much larger, and perhaps would have produced better results (though nearest

neighbor calculation and local SVD computations would have been slower).

All models were trained for 50 epochs with a batch size of 256 on a dataset of size
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100,000, split 90%/10% into train/test. We used the Adam optimizer with a learning rate

starting at 0.001 and decaying by 1
10 halfway and three-quarters of the way through training.

For COFHAE, we selected softmax temperature t, the assignment penalty strength

l1, and the adversarial penalty strength l2 based on training set reconstruction error and

MIMOSA assignment accuracy. Splitting off a separate validation set was not necessary, as

the most common problem we faced was poor convergence, not overfitting; the adversarial

penalty would dominate and prevent the procedure from learning a model that could

reconstruct X or A.

Specifically, for each restart, we ran COFHAE with t in {
1
2 , 2

3 , 1}, l1 in {10, 100, 1000},

and l2 in {1, 10, 100}. We then selected the model with the lowest training MSE Ân ||xn �

x0n||22, but restricting ourselves to the 33.3% of models with the lowest assignment loss

Ân La(an, a0n).

For evaluating R4 and R4
c , we used gradient boosted decision trees, which were faster to

train than neural networks.

D.2 Complexity and Runtimes

Per Fig. D.2, the total runtime of our method is dominated by COFHAE, an adversarial

autoencoder method which has the same complexity as FactorVAE [110] (linear in dataset

size N and number of training epochs, and strongly affected by GPU speed).

MIMOSA could theoretically take more time, however, as the complexity of constructing

a ball tree [170] for nearest neighbor queries is O(|Z|N log N). As such, initial dimensionality

reduction is critical; in our Spaceshapes experiments, |Z| is 7, whereas |X| is 4096.

Other MIMOSA steps can also take time. With a num_nearest_neighbors of k, the

complexity of running local SVD on every point in the dataset is O(N(|Z|2k + |Z|k2 + k3)),

providing another reason to reduce initial dimensionality and keep neighborhood size

manageable (though ideally k should increase with |Z| to robustly learn local manifold

directions). Iterating over the dataset in BuildComponent and computing cosine similarity

will also have complexity at least O(Nkd3(d + |Z|)) for components of local dimensionality
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d, and detecting component boundaries can actually have complexity O(Nked) (if this is

implemented, as in our experiments, by checking if projected points are contained in their

neighbors’ convex hulls—though we also explored a much cheaper O(Nk2d) strategy of

checking for the presence of neighbors in all principal component directions that worked

almost as well).

Although these scaling issues are worth noting, MIMOSA was still relatively fast in our

experiments, where runtimes were dominated by neural network training (Fig. D.2).

Algorithm 3 LocalSVD(Z)
1: Run SVD on Z (a design matrix of dimension num_nearest_neighbors by
initial_dim)

2: if ransac_frac < 1 then
3: for each dimension d from 1 to initial_dim� 1 do
4: for each point zn do
5: Compute the reconstruction error for zn using the only first d SVD dimensions
6: end for
7: end for
8: Take the norm of reconstruction errors across dimensions, giving a vector of length

num_nearest_neighbors
9: Re-fit SVD on points whose error-norms are less than the 100⇥ransac_frac percentile

value.
10: end if
11: for each dimension d from 1 to initial_dim� 1 do
12: Check if the cumulative sum of the first d eigenvalues is at least eig_cumsum_thresh
13: Check if the ratio of the dth to the d + 1st eigenvalue is at least eig_decay_thresh
14: if both of these conditions are true then
15: return only the first d SVD components
16: end if
17: end for
18: return the full set of SVD components otherwise

Algorithm 4 TangentPlaneCos(U, V)
1: if U and V are equal-dimensional then
2: return |det(U · VT)|
3: else
4: return 0
5: end if
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Algorithm 5 BuildComponent(zi, neighbors, svds)
1: Initialize component to zi and neighbors zj not already in other components where

TangentPlaneCos(svdsi, svdsj) � cos_simil_thresh (Algorithm 4).
2: while the component is still growing do
3: Add all points zk for which at least contagion_num of their neighbors z` are already

in the component with TangentPlaneCos(svdsk, svds`) � cos_simil_thresh.
4: Skip adding any zk already in another component.
5: end while
6: return the set of points in the component

Algorithm 6 MergeComponents(components, svds)
1: Discard components smaller than min_size_init.
2: for each component ci do
3: Construct a local ball tree for the points in ci.
4: Set ci.edges to points not contained in the convex hull of their neighbors in local SVD

space.
5: end for
6: Initialize edge overlap matrix M of size |components| by |components| to 0.
7: for each ordered pair of equal-dimensional components (ci, cj) do
8: Set Mij to the fraction of points in ci.edges for which the closest point in cj.edges has

local SVD tangent plane similarity above cos_simil_thresh.
9: end for

10: Average M with its transpose to symmetrize.
11: Merge all components ci 6= cj of equal dimensionality d where Mij �

min_common_edge_frac(d).
12: Discard components smaller than min_size_merged.
13: return the merged set of components

Figure D.1: Comparison of the latent spaces learned by MIMOSA initial autoencoders with ReLU (top) vs.
Softplus (bottom) activations. Each plot shows encoded Chopsticks data samples colored by their ground-truth
location in the dimension hierarchy. Because ReLU activations are non-differentiable at 0, the resulting latent
manifolds contain sharp corners, which makes it difficult for MIMOSA’s local SVD procedure to merge points
together into the correct components.
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Algorithm 7 ConstructHierarchy(components)
1: for each component ci do
2: Set ci.neighbor_lengthscale to the average distance of points to their nearest neighbors

inside the component (computed using the local ball tree from Algorithm 6)
3: end for
4: for each pair of different-dimensional components (ci, cj), ci higher-dimensional do
5: Compute the average distance from points in ci to their nearest neighbors in cj (via

ball tree).
6: Divide this average distance by ci.neighbor_lengthscale.
7: if the resulting ratio  neighbor_lengthscale_mult then
8: Set cj 2 ci (cj is enclosed by ci)
9: end if

10: end for
11: Create a root node with edges to all components which do not enclose others.
12: Transform the component enclosure DAG into a tree (where enclosing components are

children of enclosed components) by deleting edges which:

1. are redundant because an intermediate edge exists, e.g. if c1 2 c2 2 c3, we delete
the edge between c1 and c3.

2. are ambiguous because a higher-dimensional component encloses multiple lower-
dimensional components (i.e. has multiple parents). In that case, preserve only
the edge with the lowest distance ratio.

13: Convert the resulting component enclosure tree into a dimension hierarchy:

1. If the root node has only one child, set it to be the root. Otherwise, begin with
a dimension group with a single categorical dimension whose options point to
groups containing each child.

2. For the rest of the component tree, add continuous dimensions until the total
number of continuous dimensions up to the root equals the component’s dimen-
sionality.

3. If a component has children, add a categorical dimension that includes those child
groups as options (recursing down the tree), along with an empty group ( ∆ )
option.

14: return the dimension hierarchy
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Algorithm 8 HAEq .encode(x; t)
1: Encode x using any neural network architecture as a flat vector zpre, with size equal

to the number of continuous variables plus the number of categorical options in
HAEq .hierarchy.

2: Associate each group of dimensions in the flat vector with variables in the hierarchy.
3: For all of the categorical variables, pass their options through a softmax with temperature

t.
4: Use the resulting vector to mask all components of zpre corresponding to variables below

each option in HAEq .hierarchy.
5: return the masked representation, separated into discrete a0, continuous z, as well as

the mask m (for determining active dimensions later).

Figure D.2: Mean runtimes and percentage breakdowns for COFHAE and MIMOSA on Chopsticks and
Spaceshapes, based on Tensorflow implementations running on single GPUs (exact model varies between Tesla
K80, Tesla V100, GeForce RTX 2080, etc). Runtimes tend to be dominated by COFHAE, which is similar in
complexity to existing adversarial methods (e.g. FactorVAE).
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D.3 MIMOSA Hyperparameters

In this section, we list and describe all hyperparameters for MIMOSA, along with values

that we used for our main results. We also present sensitivity analyses in Fig. D.3.

MIMOSA initial autoencoder (Algorithm 1, line 1)

• initial_dim - the dimensionality of the initial smooth autoencoder. As Fig. D.3

shows, this can be larger than the intrinsic dimensionality of the data, which MIMOSA

will estimate. We defaulted to using the max. intrinsic dimensionality plus 1; in

a real-world context where this information is not available, it can be estimated by

reducing from initial_dim = |X| until reconstruction error starts increasing.

• Training and architectural details appropriate for the data modality (e.g. convolutional

layers for images). See §D.1 for our choices.

LocalSVD (Algorithm 3)

• num_nearest_neighbors - the neighborhood size for local SVD and later traversal.

We used 40. Must be larger than initial_dim; could also be replaced with a search

radius.

• ransac_frac - the fraction of neighbors to refit SVD. We used 2/3. Note that we do

not run traditional multi-step RANSAC [73], but a two-step approximation, where we

define loss by aggregating reconstruction errors across dimensions. Another (slower

but potentially more robust) option would be to iteratively refit SVD on the points with

lowest reconstruction error at each dimension, and check if the resulting eigenvalues

meet our cutoff criteria.

• eig_cumsum_thresh - the minimum fraction of variance SVD dimensions must

explain to determine local dimensionality. We used 0.95. For noisy or sparse data, it

might be useful to reduce this parameter.

• eig_decay_thresh - the minimum multiplicative factor by which SVD eigenvalues

must decay to determine local dimensionality. We used 4. It might also be useful to
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Figure D.3: Effect of varying different hyperparameters (and ablating different robustness techniques) on
MIMOSA. Default values are shown with vertical gray dotted lines, and for each hyperparameter (top to
bottom), average coverage (left), purity (middle), and H error (right) when deviating from defaults are shown
for three versions of the Chopsticks dataset. Results suggest both a degree of robustness to changes (degradations
tend not to be severe for small changes), but also the usefulness of various components; for example, results
markedly improve on some datasets with contagion_num>1 and ransac_frac<1 (implying contagion
dynamics and RANSAC both help). Many parameters exhibit tradeoffs between component purity and dataset
coverage.
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reduce this parameter for sparse data.

Note that our LocalSVD algorithm can be seen as a faster version of Multiscale SVD [143],

which is used in an analogous way by Mahapatra and Chandola [2017], but would require

repeatedly computing singular value decompositions over different search radii for each

point.

BuildComponent (Algorithm 5)

• cos_simil_thresh - neighbors’ local SVDs must be this similar to add to the

component. This corresponds to the e parameter from Mahapatra and Chandola [2017].

We used 0.99 for Chopsticks and 0.95 for Spaceshapes; in general, we feel this is one

of the most important parameters to tune, and should generally be reduced in the

presence of noise or data scarcity.

• contagion_num - only add similar points to a manifold component when a threshold

fraction of their neighbors have already been added. This is useful for robustness,

and corresponds to the T parameter from Mahler [2020] (but expressed as a number

rather than a fraction). We used 5 for Chopsticks and 3 for Spaceshapes. Values above

20% of num_nearest_neighbors will likely produce poor results, and we found the

greatest increases in robustness just going from 1 (or no contagion dynamics) to 2.

MergeComponents (Algorithm 6)

• min_size_init - discard initial components smaller than this. We used 0.02% of

the dataset size, or about 20 points. This parameter helps speed up the algorithm (by

reducing the number of pairwise comparisons) and avoids incorrect merges through

single-point components.

• min_size_merged - discard merged components smaller than this. We used 2%

of the dataset size, or about 2000 points. This parameter helps exclude spurious

high-dimensional interstitial points that appear at boundaries where low-dimensional

components intersect.
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• min_common_edge_frac(d) - the minimum fraction of edges that two manifold

components must share in common to merge, as a function of dimensionality d. We

used 2�d�1 + 2�d�2; this is based on the idea that two neighboring (possibly distorted)

hypercubes of dimension d should match on one of their sides; since they have 2d

sides, the fraction of matching edge points would be 2�d. However, for robustness

(as not all components will be hypercubes, and even then some edge points may not

match), we average this with the smaller fraction that a d + 1 dimensional hypercube

would need, or 2�d�1, for our resulting 2�d�1 + 2�d�2. We found that this choice was

not critical in preliminary experiments, as matches were common for components with

the same true assignments and rare for others, but it could become more important

for sparse or noisy data.

ConstructHierarchy (Algorithm 7)

• neighbor_lengthscale_mult - the threshold for deciding whether a higher-

dimensional component “encloses” a lower-dimensional component, expressed as a

ratio of (1) the average distance from lower-dimensional component points to their

nearest neighbors in the higher-dimensional component (inter-component distance),

to (2) the average distance of points in the higher-dimensional component to their

nearest neighbors in that same component (intra-component distance). We used 10,

which we found was robust for our benchmarks, though it may need to be increased if

ground-truth components are higher-dimensional than those in our benchmarks.
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Figure D.4: A fuller version of main paper Fig. 8.4 showing COFHAE ablations on all datasets. Hierarchical
disentanglement tends to be low for flat AEs (Flat), better with ground-truth hierarchy H (Hier H), and even
better after adding supervision for ground-truth assignments A (H+A). Adding a FactorVAE-style marginal
TC penalty (H+A+TC(Z)) sometimes helps disentanglement, but making that TC penalty conditional
(H+A+TC(Z|on), i.e. COFHAE) tends to help more, bringing it close to the near-optimal disentanglement
of a hierarchical model whose latent representation is fully supervised (H+A+Z). Partial exceptions include
the hardest three datasets (Spaceshapes and depth-3 compound Chopsticks), where disentanglement is not
consistently near 1; this may be due to non-identifiability or adversarial optimization difficulties.

Figure D.5: Varying disentanglement penalty hyperparameters for baseline algorithms (TCVAE and Factor-
VAE). In contrast to COFHAE, no setting produces near-optimal disentanglement, even sporadically.
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(a) AE pairwise histograms and R4/R4
c scores (b) TCVAE pairwise histograms and R4/R4

c scores

(c) COFHAE pairwise histograms and R4/R4
c scores

Figure D.6: Pairwise histograms of ground-truth vs. learned variables for a flat autoencoder (top left),
b-TCVAE (top right), and the best-performing run of COFHAE (bottom) on Spaceshapes. Histograms are
conditioned on both variables being active, and dimension-wise components of the R4

c score are shown on the
right. b-TCVAE does a markedly better job disentangling certain components than the flat autoencoder, but in
this case, COFHAE is able to fully disentangle the ground-truth by modeling the discrete hierarchical structure.
See Fig. 8.6 for a latent traversal visualization.
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Figure D.7: Three different potential hierarchies for Spaceshapes which all have the same structure of variable
groups and dimensionalities, but with different distributions of continuous variables across groups. The
ambiguity in this case is that the continuous variable that modifies each shape (phase, shine, angle) could
either be a child of the corresponding shape category, or be “merged up” and combined into a single top-level
continuous variable that controls the shape in different ways based on the category. Alternatively, the location
variables x and y could instead be “pushed down” from the top level and duplicated across each shape category.
In each of these cases, the learned representation still arguably disentangles the ground-truth factors—in
the sense that for any fixed categorical assignment, there is still 1:1 correspondence between all learned and
ground-truth continuous factors. We deliberately design our R4

c and H-error metrics in §8.6 to be invariant to
these transformations, leaving this specific disambiguation to future work.

Figure D.8: MIMOSA-learned initial encoding (left), components (middle), and hierarchy (right) for Space-
shapes. Initial points are in 7 dimensions and projected to 3D for plotting. Three identified components are 3D
and one is 4D. Analogue of Fig. 8.2 in the main text.

Figure D.9: MIMOSA-learned initial encoding (left), 2D and 1D components (middle), and hierarchy (right)
for depth-2 Chopsticks varying the slope. Analogue of Fig. 8.2 in the main text.

Figure D.10: MIMOSA-learned initial encoding (left), 2D, 1D, and 3D components (middle), and hierarchy
(right) for depth-3 Chopsticks varying the slope. Initial points are in 4 dimensions and projected to 3D for
plotting. Analogue of Fig. 8.2 in the main text.
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Figure D.11: MIMOSA-learned initial encoding (left), 2D and 4D components (middle), and hierarchy (right)
for depth-2 Chopsticks varying both slope and intercept. Initial points are in 5 dimensions and projected to
3D for plotting. Analogue of Fig. 8.2 in the main text.

Figure D.12: MIMOSA-learned initial encoding (left), 2D, 4D, and 6D components (middle), and hierarchy
(right) for depth-2 Chopsticks varying both slope and intercept. Initial points are in 7 dimensions and projected
to 3D for plotting. Analogue of Fig. 8.2 in the main text.

Figure D.13: MIMOSA-learned initial encoding (left), 1D-3D components (middle), and hierarchy (right) for
depth-3 Chopsticks varying either slope or intercept. Note that the learned hierarchy is not quite correct (two
nodes at the deepest level are missing). Initial points are in 5 dimensions and projected to 3D. Analogue of
Fig. 8.2.
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(a) Chopsticks Xes corrupted by Gaussian noise. (b) Effect of noise on initial autoencoder Zs.

(c) Effect of noise on MIMOSA for two variants.

Figure D.14: Illustration of the sensitivity of MIMOSA to data noise. In preliminary experiments, we
find that noise poses the greatest problem for identifying the lowest-dimensional components, e.g. the 1D
components in (b) that end up being classified as 2D or 3D. Tuning parameters would help, but we lack labels
to cross-validate.

194



Figure D.15: Pairwise histograms of ground-truth vs. learned variables for COFHAE on the most complicated
hierarchical benchmark (Chopsticks at a recursion depth of 3 varying either slope or intercept). Histograms
are conditioned on both variables being active, and dimension-wise components of the R4

c score are shown on
the right. Despite the depth of the hierarchy, COFHAE representations model it fairly well.
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