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Abstract

When training Bayesian neural networks (BNNs), practitioners may wish to place
priors that encode external knowledge not necessarily present in the training data.
We propose a method for imposing priors on the changes in network outputs
after performing user-defined interventions on inputs, which we believe is flexible
enough to encode many forms of domain knowledge. We connect our approach
to the literature on causality, monotonicity, and invariance, then interrogate its
behavior on a variety of toy and real-world datasets.

1 Introduction

In this work, we propose a method for incorporating external knowledge into the priors of Bayesian
neural networks. Specifically, we focus on a particular class of knowledge: that our network f is
either monotonic or invariant under a user-defined perturbation, which we formalize as a “guiding
function” g. As a concrete example, imagine g is a function which returns the brightness of an image.
A day vs. night model fday should generally increase monotonically with brightness, while a cat vs.
dog model fcat should probably be invariant to changes in brightness. The novelty of our approach
over existing methods [1, 2, 3] is that we are not restricted to imposing monotonicity or invariance
with respect to individual input features (which in the invariance case would not be particularly
interesting), but instead any nonlinear function of our inputs, which allows users to encode more
complex forms of prior knowledge.

2 Approach

Our method is inspired by the notion of a “controlled direct effect” (CDE). [4] defines CDEs as
measurements of “the sensitivity [of an outcome variable] to changes in [a set of variables] while
all other factors in the analysis are held fixed.” If a CDE is positive, this indicates the presence of a
causal relationship between the variable change (often called a “transition”) and the outcome; if it
is 0, it indicates the absence of one. Although CDEs are difficult to estimate from real-world data
due to the unobservability of counterfactuals, they are easy to compute if the outcome is simply the
output of a neural network.

In this paper, we focus on placing priors over the CDEs of continuous transformations on inputs
x ∈ RD on binary classification or univariate regression models ŷ = f(x) : RD → R, meant to
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Figure 1: Left: 2D local monotonicity prior samples from 50-unit hidden layer BNNs with (RBF
/ softplus) activations and local monotonicity priors with respect to x, y, both x and y, and radial
distance (a nonlinear function of the input features). Right: samples from 1D and 2D local invariance
priors imposed over limited regions (indicated by the legends beside each set of plots).

estimate a set of targets y. In particular, assume we have a “guiding function” g(x), which measures
an aspect of interest without directly measuring any of the other confounding factors (even if its value
over the dataset is correlated, e.g. if all the cats used to train fcat were photographed in the dark). We
recommend thinking of guiding functions as abstract features, which may simply be input dimensions
but can be higher-level (e.g. expert-defined metrics, embedding components, or outputs of models
that predict quantities other than ŷ).

Using this concept, we can define a transition
pushε(x, g) , argmax

x′ ∈Ω∩Bε(x)

g(x′), (1)

which moves x to a new point x′ that maximizes g(·) subject to the constraint that x′ is near x (within
Bε, an ε-ball under some distance measure) and that x′ remains within the permitted input space Ω
(possibly RD, or possibly a manifold embedded within it). The CDE of this transition is

CDEε(f, g, x) = f(pushε(x, g))− f(x). (2)
Using the CDE, we extend prior notions of monotonicity and invariance [5, 2, 6] (discussed further in
Section A) to apply to guiding functions:

Definition 2.1 f is locally monotone wrt. g if ∃ ε > 0 such that, for all x ∈ Ω, CDEε(f, g, x) ≥ 0.

Definition 2.2 f is locally invariant wrt. g if ∃ ε > 0 such that, for all x ∈ Ω, CDEε(f, g, x) = 0.

Approximation using gradients. Computing Equation 2 is difficult because it requires choosing
ε and performing an inner optimization over g for each value of x. In Section B, we show that as
ε→ 0 (under certain smoothness assumptions on f and g, with locally unconstrained Ω),

CDEε(f, g, x) ≈ ε∇f(x)ᵀ∇g(x) ∝ cos(∇f(x),∇g(x)) (3)
Using this approximation, we can formulate ε-independent causal direct effect “error” functions

InvErr(f, g, x) ≡ cos2(∇f(x),∇g(x)),

MonoErr(f, g, x) ≡ bcos(∇f(x),∇g(x))c2−
(4)

which we incorporate into a prior on Bayesian neural networks fW using
P (fW ) ∝ N (W |0, σ2)

∏
m exp

{
−λmEpm(x) [Errm(fW , gm, x)]

}
, (5)

where we impose each local monotonicity/invariance prior (indexed by m) over a separate input
distribution pm, which is often the training distribution but can be altered to include unlabeled
data or to exclude areas where priors should not hold (allowing users to express knowledge only
pertaining to certain regions). The log prior probability, which (up to a constant) is logN (W |0, σ2)−∑
m λmEpm(x) [Errm(fW , gm, x)], is relatively simple to compute, making it convenient for log

loss optimization or variational inference with minibatches.

Samples from 1D and 2D examples of these kinds of priors are shown in Figure 1 (with additional
toy regression and classification examples in Figure 7).

2



3 Experiments

We tested our method in several settings: a synthetic 3D regression example with nonlinear local
invariance (Figures 4 and 5), the UCI Adult and Concrete datasets [7] with local monotonicity to
individual features and nonlinear functions of them (Figure 6 and Table 1), and COMPAS [8] with
local invariance to a race prediction model. For brevity, we focus on COMPAS but refer readers to
the appendix for other results and implementation details.

COMPAS is a dataset for rearrest prediction of defendants from Broward County, Florida. The dataset
has been shown to contain significant racial disparities, which tend to result in different predictive
performances for white and black defendants [9]. Since discrimination in policing has been shown to
lead to higher arrest rates for blacks disproportionate to rates of offense [10], practitioners may wish
to counteract this bias with an invariance prior.

When trying to encode race with a guiding function g(x), simply letting g(x) be an input dimension
will not work as we may simply pick up correlates in the data. Instead, we first train a logistic classifier
h(x) to predict race given x, and then set g(x) = h(x). In setting a prior that f(x) is locally invariant
wrt. g(x), we encourage a notion of individual fairness (“treat similar individuals similarly,” [11])
with a kernel that considers individuals similar if they differ only by race (as imperfectly quantified
by g(x)). This approach differs conceptually from others that try to enforce statistical parity.

In Figure 2, we illustrate the effect of increasing the invariance prior strength on the performance
statistics of the MAP predictor. Overall, we find that local invariance with respect to race prediction
models can reduce differences in model false-positive and false-negative rates for white and black
defendants at an initially modest cost to accuracy. In Figure 3, we also show that these locally
invariant models have qualitatively different feature importance distributions.

Figure 2: Prediction statistics vs. accuracy for a MAP predictor trained on COMPAS to predict
recidivism, varying the invariance prior strength λ. Top left: mean invariance loss (see Eq. 4)
decreases to 0 with λ at low initial cost of accuracy. Bottom left: the difference in mean prediction
between black and white defendants (initially positive) decreases with λ. Top and bottom right:
differences in false positive and false negative rates (initially biased towards FPs for black defendants
and FNs for white defendants) fall to 0 with λ, suggesting model errors become more symmetric.

4 Discussion and Conclusion

In this paper, we proposed a method for incorporating external knowledge into a BNN prior if the
knowledge can be framed as “local” monotonicity or invariance with respect to some guiding function
g. Overall, encoding expert causal knowledge into a prior can be useful when it helps disambiguate
equally valid hypotheses supported by the data (as in the 3D synthetic example in Section D.1), or
counteract dataset bias (as in the COMPAS example).
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One interesting finding from our experiments is that results for invariance priors were generally
stronger than those for monotonicity. In our real-world monotonicity experiments, our data already
supported our prior (Section D.2), so although our approach was never harmful, it also never helped.
We observed similar results in preliminary experiments on other datasets from the non-Bayesian
monotonicity literature. We speculate this may occur because BNNs often underfit [12], while
avoiding overfitting is usually the motivation for monotonicity priors on datasets that are already
inherently monotone [13]. Another possible reason for differences in effect strengths is that local
invariance is an equality constraint, whereas monotonicity is a much less prescriptive inequality.

Overall, we believe expressing causal knowledge in terms of sensitivity to local changes is a promising
approach. More broadly, we feel that better tools for relating causal knowledge to model priors will
be essential for understanding and improving their generalization beyond limited training data.

Figure 3: Distribution of MAP feature importances in COMPAS, with and without local invariance
priors wrt. a separate race classifier. After incorporating the prior, some associations are dramatically
different. For example, having no or few juvenile penalties (num_juv_fel_{0,1}) becomes exculpa-
tory, while being older (age_cat_25_to_45) ceases to mitigate perceived risk, and having numerous
non-felony/misdemeanor juvenile citations (num_juv_other_>=2 is more heavily penalized.
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A Related Work

Methods of imposing hard or soft monotonicity constraints have been studied for neural networks
[14, 5, 2, 1], though not always in a Bayesian context. [3], though applied to deep Gaussian processes,
provide an excellent framework for expressing priors about both local monotonicity and invariance.
However, all of these methods only consider monotonicity with respect to individual input dimensions.

Invariance to general (nonlinear, multidimensional) perturbations has recently been studied for
Bayesian models [6]. However, most other attempts to incorporate negative knowledge either focus
on techniques like enforcing global uncorrelatedness of f(x) and g(x) across predefined groups
(e.g. demographic parity, [15]), or “censoring” group membership [16]. The disadvantage of these
approaches over local invariance techniques is that they make it impossible to learn a perfectly
accurate model if base rates differ between groups [9].

Other methods of incorporating domain knowledge into priors include distillation between neural
networks and logical rules [17], function priors based on related tasks [18], and inequality constraints
on network outputs [19]. Another approach is simply to learn residuals on top of expert-provided
baselines. In this paper, we focus on the case where exact baselines are unavailable, but experts
still have information about the effects of perturbations. Finally, our approach can be seen as a
specialization of the recently introduced framework of attribution priors [20], though our formulation
allows for the additional option that each CDE prior can be defined for a different input distribution.

B Gradient Approximation Details

Taylor expanding f and g around x, in the limit of ε→ 0 and Bε(x) ∩ Ω ≈ Bε(x),

CDEε(f, g, x) = f(pushε(x, g))− f(x)

≈ f(x+ ε∇g(x))− f(x)

=
(
f(x) + ε∇f(x)ᵀ∇g(x) +O(ε2)

)
− f(x)

≈ ε∇f(x)ᵀ∇g(x)

∝ ∇f(x)ᵀ∇g(x)

||∇f(x)|| ||∇g(x)||
= cos(∇f(x),∇g(x)).

(6)

We opted to use the cosine approximation rather than the dot product because the dot product can
be spuriously minimized by sending∇f(x) to 0, which sometimes produced undesirable effects in
preliminary experiments. However, using cosines does change the relative strengths of CDE-based
penalties for different inputs (even if it does not change our objective’s global minimum). Another
option we did not explore would be to normalize ∇f but not ∇g, i.e. penalize ∇fᵀ∇g/||∇f ||. Note
that in the special case of region-specific 1D invariance priors (e.g. the 1D example in Figure 1), we
omit ∇f normalization since we actually want the gradient to approach 0.

C Training Details

For all experiments, we optimize our neural networks using Autograd [21], generally using a single
100-unit hidden layer with softplus activations (which often work better with gradient penalties, due
to their smoothness). If finding a MAP solution, we use the Adam [22] optimizer with learning rate
10−2. If running Hamiltonian Monte Carlo (HMC) [23] (e.g. for generating prior samples), we use
L=10 leapfrog steps with step size ε tuned so that the acceptance rate converges to ≈0.7.

D Additional Experiments

D.1 Synthetic 3D Regression (Local Invariance)

In Figure 4 we present a 3D regression dataset with inputs on a subset Strain of [−2, 2]3

and regression targets equal to f(x, y, z) = x3 + y2. However, on this subset, a differ-
ent function g(x, y, z) = y + z3 predicts the same targets to within 0.05. That is, Strain ={

(x, y, z) ∈ [−2, 2]3 : |x3 + y2 − y − z3| ≤ 0.05
}

In our test set, we evaluate over the entirety
of Stest = [−2, 2]3.
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Figure 4: 3D ambiguous regression dataset. The true function generating the regression target is
f(x, y, z) = x3 + y2 (left), but in the training region (right), a second function g(x, y, z) = y + z3

(center) always returns a value within 0.05 of f(x, y, z). The challenge is to train a model which
generalizes outside the training region in accordance with f rather than g.

Figure 5: Comparison of MSE and train time on the 3D regression problem (over different local
invariance formulations and λs). Shaded regions show standard deviations over 10 restarts. Both
formulations reduce MSE, but the pushε version is slower.

For this experiment, we test two formulations of our local invariance prior, one based on gradients
(Equation 4) and one based on projected gradient descent (similar to [24]), which we expect to be
a more exact approximation of CDEε(f, g, x). In that formulation, we run 25 steps of projected
gradient descent within each outer optimization step (using Euclidean distance for Bε with ε = 0.35
and a step size of 0.2). As a baseline, we test a normal BNN trained with just the σ2 = 100 Gaussian
weight prior (which all methods share). Results by method are presented in Figure 5; the takeaway is
that training with a local invariance penalty allows much better extrapolation to the full grid, and that
cosine approximations perform on par with PGD.

D.2 UCI Adult and Concrete Datasets

We also evaluated how well our method performs in the monotonicity case on the ADULT and
Concrete Compressive Strength datasets from the UCI repository [7]. The ADULT dataset is
commonly used to test monotonic neural networks; we used the same setup as [13] (which gives us
five guiding functions g that each return individual columns of x, with the column corresponding to
female gender negated). Results are in Table 1.

Method Train Accuracy Test Accuracy
Logistic Regression 84.66± 0.00 84.65± 0.00
BNN, Gaussian Prior 85.81± 0.05 84.96± 0.06
BNN, Monotonicity per Eq. 4 85.84± 0.07 84.98± 0.07
BNN, Monotonicity per [1] 85.86± 0.05 85.05± 0.10

Table 1: On the ADULT dataset, monotonicity priors did not significantly change generalization
performance, perhaps because baseline BNNs already learn to be locally monotone (Figure 6).
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The Concrete dataset is less commonly considered in the monotonicity literature, but [25]
provide a nonlinear expert baseline model proportional to (xwater/(xcement + xslag + xash))

−1.3 ·
(ln(xage) + const), which we use as our g. We hypothesized this dataset would be an interesting
test case for local monotonicity with respect to a nonlinear guiding function. However, we did not
see significant decreases in error by imposing local monotonicity priors. When we investigated our
results further (Figure 6), we discovered that baseline neural networks had already learned to fully
satisfy our local monotonicity priors, rendering them superfluous.

Figure 6: Superfluousness of local monotonicity priors on the concrete strength (left) and census
income (right) datasets. On the concrete dataset, normal BNNs and the expert-provided baseline
already show strong gradient and CDE alignment, while on the census dataset, local monotonicity
already holds everywhere (except for gender_Male, whose gradients are very small, though this may
not even be a true exception because gender_Male and gender_Female cannot change independently).

D.3 Additional Toy Examples

Finally, in Figure 7 we present additional toy examples to illustrate the kinds of priors and posteriors
we can learn with our method.

Figure 7: Top: Additional 1D locally monotone regression examples (computed via HMC and
imposed by sampling over shaded regions). Bottom: 2D classification example where training data is
restricted to the subset of [−10, 10]2 where x1x2 and x2

1 − x2
2 have equal signs (which determines

y). We use softplus MLPs and plot posterior mean log-odds (in red/blue) and decision boundary
samples (in purple), computed using Bayes-by-Backprop [26]. In the right two plots, we impose
local invariance priors with respect to the two generating functions over training inputs, which lets us
control decision boundary behavior despite the functions’ nonlinearity.
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