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Abstract

Neural networks are among the most accurate supervised learning methods in use today.

However, their opacity makes them difficult to trust in critical applications, especially when

conditions in training may differ from those in practice. Recent efforts to develop explanations

for neural networks and machine learning models more generally have produced tools to

shed light on the implicit rules behind predictions. These tools can help us identify when

models are right for the wrong reasons. However, they do not always scale to explaining

predictions for entire datasets, are not always at the right level of abstraction, and most

importantly cannot correct the problems they reveal. In this thesis, we explore the possibility

of training machine learning models (with a particular focus on neural networks) using

explanations themselves. We consider approaches where models are penalized not only for

making incorrect predictions but also for providing explanations that are either inconsistent

with domain knowledge or overly complex. These methods let us train models which can

not only provide more interpretable rationales for their predictions but also generalize

better when training data is confounded or meaningfully different from test data (even

adversarially so).
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Chapter 1

Introduction

The motivation for this thesis is easiest to express with a story:

A father decides to teach his young son what a sports car is. Finding it difficult to
explain in words, he decides to give some examples. They stand on a motorway
bridge and as each car passes underneath, the father cries out “that’s a sports
car!” when a sports car passes by. After ten minutes, the father asks his son if
he’s understood what a sports car is. The son says, “sure, it’s easy”. An old red
VW Beetle passes by, and the son shouts – “that’s a sports car!”. Dejected, the
father asks – “why do you say that?”. “Because all sports cars are red!”, replies
the son. (Barber, 2012)

There is another popular version that pokes fun at the Department of Defense:

In the early days of the perceptron the army decided to train an artificial neural
network to recognize tanks partly hidden behind trees in the woods. They took
a number of pictures of a woods without tanks, and then pictures of the same
woods with tanks clearly sticking out from behind trees. They then trained a net
to discriminate the two classes of pictures. The results were impressive, and the
army was even more impressed when it turned out that the net could generalize
its knowledge to pictures from each set that had not been used in training the net.
Just to make sure that the net had indeed learned to recognize partially hidden
tanks, however, the researchers took some more pictures in the same woods
and showed them to the trained net. They were shocked and depressed to find
that with the new pictures the net totally failed to discriminate between pictures
of trees with partially concealed tanks behind them and just plain trees. The
mystery was finally solved when someone noticed that the training pictures of
the woods without tanks were taken on a cloudy day, whereas those with tanks
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were taken on a sunny day. The net had learned to recognize and generalize the
difference between a woods with and without shadows! (Dreyfus and Dreyfus,
1992)

The first story is a parable and the second is apocryphal1, but both illustrate an inherent

limitation in learning by example, which is how we currently train machine learning systems:

we only provide them with inputs (questions, X) and outputs (answers, y). When we train

people to perform tasks, however, we usually provide them with explanations, since without

them many problems are ambiguous. In machine learning, model developers usually

circumvent such ambiguities via regularization, inductive biases (e.g. using CNNs when

you need translational invariance), or simply acquiring vast quantities of data (such that the

problem eventually becomes unambiguous, as if the child had seen every car in the world).

But there is still a risk our models will be right for the wrong reasons – which means that if

conditions change, they will simply be wrong.

As we begin to use ML in sensitive domains such as healthcare, this risk has highlighted

the need for interpretable models, as this final story illustrates:

Although models based on rules were not as accurate as the neural net models,
they were intelligible, i.e., interpretable by humans. On one of the pneumonia
datasets, the rule-based system learned the rule “HasAsthma(x) → Lower-
Risk(x)”, i.e., that patients with pneumonia who have a history of asthma have
lower risk of dying from pneumonia than the general population. Needless to
say, this rule is counterintuitive. But it reflected a true pattern in the training data:
patients with a history of asthma who presented with pneumonia usually were
admitted not only to the hospital but directly to the ICU (Intensive Care Unit).
The good news is that the aggressive care received by asthmatic pneumonia
patients was so effective that it lowered their risk of dying from pneumonia
compared to the general population. The bad news is that because the prognosis
for these patients is better than average, models trained on the data incorrectly
learn that asthma lowers risk, when in fact asthmatics have much higher risk (if
not hospitalized). (Caruana et al., 2015)

In this case, a pneumonia risk prediction model learned an unhelpful rule because its

training outcomes didn’t actually represent medical risk. Had the model been put into

1https://www.gwern.net/Tanks
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production, it would have endangered lives. The fact that they used an interpretable model

let them realize and avoid this danger (by not using the neural network at all). But clearly,

the dataset they used still contains information that, say, a human analyst could use to draw

useful conclusions about how to treat pneumonia. How can machine learning models utilize

it despite its flaws?

This thesis seeks to provide both concrete methods for addressing these types of prob-

lems in specific cases and more abstract arguments about how they should be solved in

general. The main strategy we will consider is explanation regularization, which means jointly

optimizing a machine learning model to make correct predictions and to explain those

predictions well. Quantifying the quality of an explanation may seem difficult (especially if

we would like it to be differentiable), but we will delve into cases where it is straightforward

and intuitive, as well as strategies for making it so.

1.1 Contributions

The major contributions of this thesis are as follows:

• It presents a framework for encoding domain knowledge about a classification problem

as local penalties on the gradient of the model’s decision surface, which can be

incorporated into the loss function of any differentiable model (e.g. a neural network).

Applying this framework in both supervised and unsupervised formulations, it trains

models that generalize to test data from different distributions, which would otherwise

be unobtainable by traditional optimization methods. (Chapter 2)

• It applies a special case of this framework (where explanations are regularized to be

simple) to the problem of defending against adversarial examples. It demonstrates

increased robustness of regularized models to white- and black-box attacks, at a level

comparable or better than adversarial training. It also demonstrates both increased

transferability and interpretability of adversarial examples created to fool regularized

models, which we evaluate in a human subject experiment. (Chapter 3)
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• It considers cases where we can meaningfully change what models learn by regulariz-

ing more general types of explanations. We review literature and suggest directions for

explanation regularization, using sparse gradients, input Hessians, decision trees, near-

est neighbors, and even abstract concepts that emerge or that we encourage to emerge

in deep neural networks. It concludes by outlining an interface for interpretable

machine teaching. (Chapter 4)
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Chapter 2

Right for the Right Reasons1

2.1 Introduction

High-dimensional real-world datasets are often full of ambiguities. When we train classifiers

on such data, it is frequently possible to achieve high accuracy using classifiers with

qualitatively different decision boundaries. To narrow down our choices and encourage

robustness, we usually employ regularization techniques (e.g. encouraging sparsity or small

parameter values). We also structure our models to ensure domain-specific invariances (e.g.

using convolutional neural nets when we would like the model to be invariant to spatial

transformations). However, these solutions do not address situations in which our training

dataset contains subtle confounds or differs qualitatively from our test dataset. In these

cases, our model may fail to generalize no matter how well it is tuned.

Such generalization gaps are of particular concern for uninterpretable models such

as neural networks, especially in sensitive domains. For example, Caruana et al. (2015)

describe a model intended to prioritize care for patients with pneumonia. The model was

trained to predict hospital readmission risk using a dataset containing attributes of patients

hospitalized at least once for pneumonia. Counterintuitively, the model learned that the

1Significant portions of this chapter also appear in Ross, A. S., Hughes, M. C. and Doshi-Velez, F. (2017b).
Right for the right reasons: Training differentiable models by constraining their explanations. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 2662–2670.
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presence of asthma was a negative predictor of readmission, when in reality pneumonia

patients with asthma are at a greater medical risk. This model would have presented a

grave safety risk if used in production. This problem occurred because the outcomes in

the dataset reflected not just the severity of patients’ diseases but the quality of care they

initially received, which was higher for patients with asthma.

This case and others like it have motivated recent work in interpretable machine learning,

where algorithms provide explanations for domain experts to inspect for correctness before

trusting model predictions. However, there has been limited work in optimizing models to

find not just the right prediction but also the right explanation. Toward this end, this work

makes the following contributions:

• We confirm empirically on several datasets that input gradient explanations match

state of the art sample-based explanations (e.g. LIME, Ribeiro (2016)).

• Given annotations about incorrect explanations for particular inputs, we efficiently

optimize the classifier to learn alternate explanations (to be right for better reasons).

• When annotations are not available, we sequentially discover classifiers with similar

accuracies but qualitatively different decision boundaries for domain experts to inspect

for validity.

2.1.1 Related Work

We first define several important terms in interpretable machine learning. All classifiers

have implicit decision rules for converting an input into a decision, though these rules may

be opaque. A model is interpretable if it provides explanations for its predictions in a form

humans can understand; an explanation provides reliable information about the model’s

implicit decision rules for a given prediction. In contrast, we say a machine learning model

is accurate if most of its predictions are correct, but only right for the right reasons if the

implicit rules it has learned generalize well and conform to domain experts’ knowledge

about the problem.
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Explanations can take many forms (Keil, 2006) and evaluating the quality of explanations

or the interpretability of a model is difficult (Lipton, 2016; Doshi-Velez and Kim, 2017).

However, within the machine learning community recently there has been convergence

(Lundberg and Lee, 2016) around local counterfactual explanations, where we show how

perturbing an input x in various ways will affect the model’s prediction ŷ. This approach to

explanations can be domain- and model-specific (e.g. “annotator rationales” used to explain

text classifications by Li et al. (2016); Lei et al. (2016); Zhang et al. (2016)). Alternatively,

explanations can be model-agnostic and relatively domain-general, as exemplified by LIME

(Local Interpretable Model-agnostic Explanations, Ribeiro et al. (2016); Singh et al. (2016))

which trains and presents local sparse models of how predictions change when inputs are

perturbed.

The per-example perturbing and fitting process used in models such as LIME can

be computationally prohibitive, especially if we seek to explain an entire dataset during

each training iteration. If the underlying model is differentiable, one alternative is to use

input gradients as local explanations (Baehrens et al. (2010) provides a particularly good

introduction; see also Selvaraju et al. (2016); Simonyan et al. (2013); Li et al. (2015); Hechtlinger

(2016)). The idea is simple: the gradients of the model’s output probabilities with respect to

its inputs literally describe the model’s decision boundary (see Figure 2.1). They are similar

in spirit to the local linear explanations of LIME but much faster to compute.

Input gradient explanations are not perfect for all use-cases—for points far from the

decision boundary, they can be uniformatively small and do not always capture the idea

of salience (see discussion and alternatives proposed by Shrikumar et al. (2016); Bach et al.

(2015); Montavon et al. (2017); Sundararajan et al. (2017); Fong and Vedaldi (2017)). However,

they are exactly what is required for constraining the decision boundary. In the past,

Drucker and Le Cun (1992) showed that applying penalties to input gradient magnitudes

can improve generalization; to our knowledge, our application of input gradients to constrain

explanations and find alternate explanations is novel.

More broadly, none of the works above on interpretable machine learning attempt to
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Figure 2.1: Input gradients lie normal to the model’s decision boundary. Examples above are for simple,
2D, two- and three-class datasets, with input gradients taken with respect to a two hidden layer multilayer
perceptron with ReLU activations. Probability input gradients are sharpest near decision boundaries, while log
probability input gradients are more consistent within decision regions. The sum of log probability gradients
contains information about the full model.

optimize explanations for correctness. For SVMs and specific text classification architectures,

there exists work on incorporating human input into decision boundaries in the form of

annotator rationales (Zaidan et al., 2007; Donahue and Grauman, 2011; Zhang et al., 2016).

Unlike our approach, these works are either tailored to specific domains or do not fully

close the loop between generating explanations and constraining them.

2.1.2 Background: Input Gradient Explanations

Consider a differentiable model f parametrized by θ with inputs X ∈ RN×D and probability

vector outputs f (X|θ) = ŷ ∈ RN×K corresponding to one-hot labels y ∈ RN×K. Its input

gradient is given by fX(Xn|θ) or ∇X ŷn, which is a vector normal to the model’s decision

boundary at Xn and thus serves as a first-order description of the model’s behavior near Xn.

The gradient has the same shape as each vector Xn; large-magnitude values of the input gra-

dient indicate elements of Xn that would affect ŷ if changed. We can visualize explanations

by highlighting portions of Xn in locations with high input gradient magnitudes.
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2.2 Our Approach

We wish to develop a method to train models that are right for the right reasons. If explana-

tions faithfully describe a model’s underlying behavior, then constraining its explanations to

match domain knowledge should cause its underlying behavior to more closely match that

knowledge too. We first describe how input gradient-based explanations lend themselves to

efficient optimization for correct explanations in the presence of domain knowledge, and

then describe how they can be used to efficiently search for qualitatively different decision

boundaries when such knowledge is not available.

2.2.1 Loss Functions that Constrain Explanations

When constraining input gradient explanations, there are two basic options: we can either

constrain them to be large in relevant areas or small in irrelevant areas. However, because

input gradients for relevant inputs in many models should be small far from the decision

boundary, and because we do not know in advance how large they should be, we opt to

shrink irrelevant gradients instead.

Formally, we define an annotation matrix A ∈ {0, 1}N×D, which are binary masks

indicating whether dimension d should be irrelevant for predicting observation n. We would

like ∇X ŷ to be near 0 at these locations. To that end, we optimize a loss function L(θ, X, y, A)

of the form

L(θ, X, y, A) =
N

∑
n=1

K

∑
k=1
−ynk log(ŷnk)︸ ︷︷ ︸

Right answers

+ λ1

N

∑
n=1

D

∑
d=1

(
And

∂

∂xnd

K

∑
k=1

log(ŷnk)

)2

︸ ︷︷ ︸
Right reasons

+ λ2 ∑
i

θ2
i︸ ︷︷ ︸

Regular

,

which contains familiar cross entropy and θ regularization terms along with a new regu-

larization term that discourages the input gradient from being large in regions marked by

A. This term has a regularization parameter λ1 which should be set such that the “right

answers” and “right reasons” terms have similar orders of magnitude; see Appendix 2.A

for more details. Note that this loss penalizes the gradient of the log probability, which

performed best in practice, though in many visualizations we show fX, which is the gradient
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of the predicted probability itself. Summing across classes led to slightly more stable results

than using the predicted class log probability max log(ŷk), perhaps due to discontinuities

near the decision boundary (though both methods were comparable). We did not explore

regularizing input gradients of specific class probabilities, though this would be a natural

extension.

Because this loss function is differentiable with respect to θ, we can easily optimize it

with gradient-based optimization methods. We do not need annotations (nonzero An) for

every input in X, and in the case A = 0N×D, the explanation term has no effect on the loss.

At the other extreme, when A is a matrix of all 1s, it encourages the model to have small

gradients with respect to its inputs; this can improve generalization on its own (Drucker and

Le Cun, 1992). Between those extremes, it biases our model against particular implicit rules.

This penalization approach enjoys several desirable properties. Alternatives that specify

a single Ad for all examples presuppose a coherent notion of global feature importance, but

when decision boundaries are nonlinear many features are only relevant in the context of

specific examples. Alternatives that simulate perturbations to entries known to be irrelevant

(or to determine relevance as in Ribeiro et al. (2016)) require defining domain-specific

perturbation logic; our approach does not. Alternatives that apply hard constraints or

completely remove elements identified by And miss the fact that the entries in A may be

imprecise even if they are human-provided. Thus, we opt to preserve potentially misleading

features but softly penalize their use.

2.2.2 Find-Another-Explanation: Discovering Many Possible Rules without An-

notations

Although we can obtain the annotations A via experts as in Zaidan et al. (2007), we may not

always have this extra information or know the “right reasons.” In these cases, we propose

an approach that iteratively adapts A to discover multiple models accurate for qualitatively

different reasons; a domain expert could then examine them to determine which is the right

for the best reasons. Specifically, we generate a “spectrum” of models with different decision

11



boundaries by iteratively training models, explaining X, then training the next model to

differ from previous iterations:

A0 = 0, θ0 = arg min
θ

L(θ, X, y, A0),

A1 = Mc [ fX|θ0] , θ1 = arg min
θ

L(θ, X, y, A1),

A2 = Mc [ fX|θ1] ∪ A1, θ2 = arg min
θ

L(θ, X, y, A2),

. . .

where the function Mc returns a binary mask indicating which gradient components have

a magnitude ratio (their magnitude divided by the largest component magnitude) of at

least c and where we abbreviated the input gradients of the entire training set X at θi as

fX|θi. In other words, we regularize input gradients where they were largest in magnitude

previously. If, after repeated iterations, accuracy decreases or explanations stop changing

(or only change after significantly increasing λ1), then we may have spanned the space of

possible models.2 All of the resulting models will be accurate, but for different reasons;

although we do not know which reasons are best, we can present them to a domain expert

for inspection and selection. We can also prioritize labeling or reviewing examples about

which the ensemble disagrees. Finally, the size of the ensemble provides a rough measure

of dataset redundancy.

2.3 Empirical Evaluation

We demonstrate explanation generation, explanation constraints, and the find-another-

explanation method on a toy color dataset and three real-world datasets. In all cases, we

used a multilayer perceptron with two hidden layers of size 50 and 30, ReLU nonlinearities

with a softmax output, and a λ2 = 0.0001 penalty on ‖θ‖2
2. We trained the network using

Adam (Kingma and Ba, 2014) with a batch size of 256 and Autograd (Mclaurin et al., 2017).

2Though one can design simple pathological cases where we do not discover all models with this method;
we explore an alternative version in Appendix 2.C that addresses some of these cases.

12



For most experiments, we used an explanation L2 penalty of λ1 = 1000, which gave our

“right answers” and “right reasons” loss terms similar magnitudes. More details about

cross-validation are included in Appendix 2.A. For the cutoff value c described in Section

2.2.2 and used for display, we often chose 0.67, which tended to preserve 2-5% of gradient

components (the average number of qualifying elements tended to fall exponentially with

c). Code for all experiments is available at https://github.com/dtak/rrr.

2.3.1 Toy Color Dataset

We created a toy dataset of 5× 5× 3 RGB images with four possible colors. Images fell into

two classes with two independent decision rules a model could implicitly learn: whether

their four corner pixels were all the same color, and whether their top-middle three pixels

were all different colors. Images in class 1 satisfied both conditions and images in class 2

satisfied neither. Because only corner and top-row pixels are relevant, we expect any faithful

explanation of an accurate model to highlight them.

Figure 2.2: Gradient vs. LIME explanations of nine perceptron predictions on the Toy Color dataset. For
gradients, we plot dots above pixels identified by M0.67 [ fX ] (the top 33% largest-magnitude input gradients),
and for LIME, we select the top 6 features (up to 3 can reside in the same RGB pixel). Both methods suggest
that the model learns the corner rule.

In Figure 2.2, we see both LIME and input gradients identify the same relevant pixels,

which suggests that (1) both methods are effective at explaining model predictions, and (2)

the model has learned the corner rather than the top-middle rule, which it did consistently

across random restarts.

However, if we train our model with a nonzero A (specifically, setting And = 1 for

13
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Figure 2.3: Implicit rule transitions as we increase λ1 and the number of nonzero rows of A. Pairs of points
represent the fraction of large-magnitude (c = 0.67) gradient components in the corners and top-middle for
1000 test examples, which almost always add to 1 (indicating the model is most sensitive to these elements
alone, even during transitions). Note there is a wide regime where the model learns a hybrid of both rules.

corners d across examples n), we were able to cause it to use the other rule. Figure 2.3

shows how the model transitions between rules as we vary λ1 and the number of examples

penalized by A. This result demonstrates that the model can be made to learn multiple

rules despite only one being commonly reached via standard gradient-based optimization

methods. However, it depends on knowing a good setting for A, which in this case would

still require annotating on the order of 103 examples, or 5% of our dataset (although always

including examples with annotations in Adam minibatches let us consistently switch rules

with only 50 examples, or 0.2% of the dataset).

Finally, Figure 2.4 shows we can use the find-another-explanation technique from

Sec. 2.2.2 to discover the other rule without being given A. Because only two rules lead to

high accuracy on the test set, the model performs no better than random guessing when

prevented from using either one (although we have to increase the penalty high enough

that this accuracy number may be misleading - the essential point is that after the first

iteration, explanations stop changing). Lastly, though not directly relevant to the discussion

on interpretability and explanation, we demonstrate the potential of explanations to reduce

the amount of data required for training in Appendix 2.B.

14



Figure 2.4: Rule discovery using find-another-explanation method with 0.67 cutoff and λ1 = 103 for θ1 and
λ1 = 106 for θ2. Note how the first two iterations produce explanations corresponding to the two rules in the
dataset while the third produces very noisy explanations (with low accuracies).

2.3.2 Real-world Datasets

To demonstrate real-world, cross-domain applicability, we test our approach on variants of

three familiar machine learning text, image, and tabular datasets:

• 20 Newsgroups: As in Ribeiro et al. (2016), we test input gradients on the alt.atheism

vs. soc.religion.christian subset of the 20 Newsgroups dataset Lichman (2013).

We used the same two-hidden layer network architecture with a TF-IDF vectorizer

with 5000 components, which gave us a 94% accurate model for A = 0.

• Iris-Cancer: We concatenated all examples in classes 1 and 2 from the Iris dataset

with the the first 50 examples from each class in the Breast Cancer Wisconsin dataset

(Lichman, 2013) to create a composite dataset X ∈ R100×34, y ∈ {0, 1}. Despite the

dataset’s small size, our network still obtains an average test accuracy of 92% across 350

random 2
3 - 1

3 training-test splits. However, when we modify our test set to remove the

4 Iris components, average test accuracy falls to 81% with higher variance, suggesting

the model learns to depend on Iris features and suffers without them. We verify that

15



our explanations reveal this dependency and that regularizing them avoids it.

• Decoy MNIST: On the baseline MNST dataset (LeCun et al., 2010), our network obtains

98% train and 96% test accuracy. However, in Decoy MNIST, images x have 4× 4 gray

swatches in randomly chosen corners whose shades are functions of their digits y in

training (in particular, 255− 25y) but are random in test. On this dataset, our model

has a higher 99.6% train accuracy but a much lower 55% test accuracy, indicating that

the decoy rule misleads it. We verify that both gradient and LIME explanations let

users detect this issue and that explanation regularization lets us overcome it.

Figure 2.5: Words identified by LIME vs. gradients on an example from the atheism vs. Christianity subset of
20 Newsgroups. More examples are available at https://github.com/dtak/rrr. Words are blue if they support
soc.religion.christian and orange if they support alt.atheism, with opacity equal to the ratio of the magnitude
of the word’s weight to the largest magnitude weight. LIME generates sparser explanations but the weights
and signs of terms identified by both methods match closely. Note that both methods reveal some aspects of
the model that are intuitive (“church” and “service” are associated with Christianity), some aspects that are
not (“13” is associated with Christianity, “edu” with atheism), and some that are debatable (“freedom” is
associated with atheism, “friends” with Christianity).

Input gradients are consistent with sample-based methods such as LIME, and faster. On

20 Newsgroups (Figure 2.5), input gradients are less sparse but identify all of the same

words in the document with similar weights. Note that input gradients also identify words

outside the document that would affect the prediction if added.
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Figure 2.6: Input gradient explanations for Decoy MNIST vs. LIME, using the LIME image library Ribeiro
(2016). In this example, the model incorrectly predicts 3 rather than 7 because of the decoy swatch.

Figure 2.7: Iris-Cancer features identified by input gradients vs. LIME, with Iris features highlighted in
red. Input gradient explanations are more faithful to the model. Note that most gradients change sign when
switching between ŷ0 and ŷ1, and that the magnitudes of input gradients are different across examples, which
provides information about examples’ proximity to the decision boundary.

On Decoy MNIST (Figure 2.6), both LIME and input gradients reveal that the model

predicts 3 rather than 7 due to the color swatch in the corner. Because of their fine-

grained resolution, input gradients sometimes better capture counterfactual behavior, where

extending or adding lines outside of the digit to either reinforce it or transform it into

another digit would change the predicted probability (see also Figure 2.10). LIME, on the

other hand, better captures the fact that the main portion of the digit is salient (because its

super-pixel perturbations add and remove larger chunks of the digit).

On Iris-Cancer (Figure 2.7), input gradients actually outperform LIME. We know from

the accuracy difference that Iris features are important to the model’s prediction, but LIME

only identifies a single important feature, which is from the Breast Cancer dataset (even

when we vary its perturbation strategy). This example, which is tabular and contains
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continuously valued rather categorical features, may represent a pathological case for LIME,

which operates best when it can selectively mask a small number of meaningful chunks

of its inputs to generate perturbed samples. For truly continuous inputs, it should not be

surprising that explanations based on gradients perform best.

There are a few other advantages input gradients have over sample-based perturbation

methods. On 20 Newsgroups, we noticed that for very long documents, explanations

generated by the sample-based method LIME are often overly sparse, and there are many

words identified as significant by input gradients that LIME ignores. This may be because

the number of features LIME selects must be passed in as a parameter beforehand, and

it may also be because LIME only samples a fixed number of times. For sufficiently long

documents, it is unlikely that sample-based approaches will mask every word even once,

meaning that the output becomes increasingly nondeterministic—an undesirable quality for

explanations. To resolve this issue, one could increase the number of samples, but that would

increase the computational cost since the model must be evalutated at least once per sample

to fit a local surrogate. Input gradients, on the other hand, only require on the order of one

model evaluation total to generate an explanation of similar quality (generating gradients

is similar in complexity to predicting probabilities), and furthermore, this complexity is

based on the vector length, not the document length. This issue (underscored by Table 2.1)

highlights some inherent scalability advantages input gradients enjoy over sample-based

perturbation methods.

LIME Gradients Dimension of x
Iris-Cancer 0.03s 0.000019s 34
Toy Colors 1.03s 0.000013s 75

Decoy MNIST 1.54s 0.000045s 784
20 Newsgroups 2.59s 0.000520s 5000

Table 2.1: Gradient vs. LIME runtimes per explanation. Note that each method uses a different version of
LIME; Iris-Cancer and Toy Colors use lime_tabular with continuous and quartile-discrete perturbation
methods, respectively, Decoy MNIST uses lime_image, and 20 Newsgroups uses lime_text. Code was
executed on a laptop and input gradient calculations were not optimized for performance, so runtimes are only
meant to provide a sense of scale.
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Figure 2.8: Overcoming confounds using explanation constraints on Iris-Cancer (over 350 random train-test
splits). By default (A = 0), input gradients tend to be large in Iris dimensions, which results in lower accuracy
when Iris is removed from the test set. Models trained with And = 1 in Iris dimensions (full A) have almost
exactly the same test accuracy with and without Iris.

Figure 2.9: Training with explanation constraints on Decoy MNIST. Accuracy is low (A = 0) on the swatch
color-randomized test set unless the model is trained with And = 1 in swatches (full A). In that case, test
accuracy matches the same architecture’s performance on the standard MNIST dataset (baseline).

Given annotations, input gradient regularization finds solutions consistent with domain

knowledge. Another key advantage of using an explanation method more closely related

to our model is that we can then incorporate explanations into our training process, which

are most useful when the model faces ambiguities in how to classify inputs. We deliberately

constructed the Decoy MNIST and Iris-Cancer datasets to have this kind of ambiguity, where

a rule that works in training will not generalize to test. When we train our network on these

confounded datasets, their test accuracy is better than random guessing, in part because

the decoy rules are not simple and the primary rules not complex, but their performance

is still significantly worse than on a baseline test set with no decoy rules. By penalizing
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explanations we know to be incorrect using the loss function defined in Section 2.2.1, we are

able to recover that baseline test accuracy, which we demonstrate in Figures 2.8 and 2.9.

Figure 2.10: Find-another-explanation results on Iris-Cancer (top; errorbars show standard deviations across
50 trials), 20 Newsgroups (middle; blue supports Christianity and orange supports atheism, word opacity set to
magnitude ratio), and Decoy MNIST (bottom, for three values of λ1 with scatter opacity set to magnitude ratio
cubed). Real-world datasets are often highly redundant and allow for diverse models with similar accuracies.
On Iris-Cancer and Decoy MNIST, both explanations and accuracy results indicate we overcome confounds
after 1-2 iterations without any prior knowledge about them encoded in A.

When annotations are unavailable, our find-another-explanation method discovers di-

verse classifiers. As we saw with the Toy Color dataset, even if almost every row of A is 0,

we can still benefit from explanation regularization (meaning practitioners can gradually

incorporate these penalties into their existing models without much upfront investment).

However, annotation is never free, and in some cases we either do not know the right

explanation or cannot easily encode it. Additionally, we may be interested in exploring the

structure of our model and dataset in a less supervised fashion. On real-world datasets,

which are usually overdetermined, we can use find-another-explanation to discover θs in
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shallower local minima that we would normally never explore. Given enough models right

for different reasons, hopefully at least one is right for the right reasons.

Figure 2.10 shows find-another-explanation results for our three real-world datasets,

with example explanations at each iteration above and model train and test accuracy below.

For Iris-Cancer, we find that the initial iteration of the model heavily relies on the Iris

features and has high train but low test accuracy, while subsequent iterations have lower

train but higher test accuracy (with smaller gradients in Iris components). In other words,

we spontaneously obtain a more generalizable model without a predefined A alerting us

that the first four features are misleading.

Find-another-explanation also overcomes confounds on Decoy MNIST, needing only one

iteration to recover baseline accuracy. Bumping λ1 too high (to the point where its term is

a few orders of magnitude larger than the cross-entropy) results in more erratic behavior.

Interestingly, in a process remniscent of distillation (Papernot et al., 2016c), the gradients

themselves become more evenly and intuitively distributed at later iterations. In many cases

they indicate that the probabilities of certain digits increase when we brighten pixels along

or extend their distinctive strokes, and that they decrease if we fill in unrelated dark areas,

which seems desirable. However, by the last iteration, we start to revert to using decoy

swatches in some cases.

On 20 Newsgroups, the words most associated with alt.atheism and

soc.religion.christian change between iterations but remain mostly intuitive in their

associations. Train accuracy mostly remains high while test accuracy is unstable.

For all of these examples, accuracy remains high even as decision boundaries shift

significantly. This may be because real-world data tends to contain significant redundancies.

2.3.3 Limitations

Input gradients provide faithful information about a model’s rationale for a prediction but

trade interpretability for efficiency. In particular, when input features are not individually

meaningful to users (e.g. for individual pixels or word2vec components), input gradients
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may be difficult to interpret and A may be difficult to specify. Additionally, because they can

be 0 far from the decision boundary, they do not capture the idea of salience as well as other

methods (Zeiler and Fergus, 2014; Sundararajan et al., 2017; Montavon et al., 2017; Bach et al.,

2015; Shrikumar et al., 2016). However, they are necessarily faithful to the model and easy to

incorporate into its loss function. Input gradients are first-order linear approximations of

the model; we might call them first-order explanations.

2.4 Discussion

In this chapter, we showed that:

• On training sets that contain confounds which would fool any model trained just to

make correct predictions, we can use gradient-based explanation regularization to learn

models that still generalize to test. These results imply that gradient regularization

actually changes why our model makes predictions.

• When we lack expert annotations, we can still use our method in an unsupervised

manner to discover models that make predictions for different reasons. This “find-

another-explanation” technique allowed us to overcome confounds on Decoy MNIST

and Iris-Cancer, and even quantify the ambiguity present in the Toy Color dataset.

• Input gradients are consistent with sample-based methods such as LIME but faster to

compute and sometimes more faithful to the model, especially for continuous inputs.

Our consistent results on several diverse datasets show that input gradients merit further

investigation as building blocks for optimizable explanations; there exist many options for

further advancements such as weighted annotations A, different penalty norms, and more

general specifications of whether features should be positively or negatively predictive of

specific classes for specific inputs.

Finally, our “right for the right reasons” approach may be of use in solving related

problems, e.g. in integrating causal inference with deep neural networks or maintaining
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robustness to adversarial examples (which we discuss in Chapter 3). Building on our

find-another-explanation results, another promising direction is to let humans in the loop

interactively guide models towards correct explanations. Overall, we feel that developing

methods of ensuring that models are right for better reasons is essential to overcoming the

inherent obstacles to generalization posed by ambiguities in real-world datasets.

2.A Cross-Validation

Most regularization parameters are selected to maximize accuracy on a validation set.

However, when your training and validation sets share the same misleading confounds,

validation accuracy may not be a good proxy for test accuracy. Instead, we recommend

increasing the explanation regularization strength λ1 until the cross-entropy and “right

reasons” terms have roughly equal magnitudes (which corresponds to the region of highest

test accuracy below). Intuitively, balancing the terms in this way should push our optimiza-

tion away from cross-entropy minima that violate the explanation constraints specified in

A and towards ones that correspond to “better reasons.” Increasing λ1 too much makes

the cross-entropy term negligible. In that case, our model performs no better than random

guessing.

Figure 2.11: Cross-validating λ1. The regime of highest accuracy (highlighted) is also where the initial
cross-entropy and λ1 loss terms have similar magnitudes. Exact equality is not required; being an order of
magnitude off does not significantly affect accuracy.
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2.B Learning with Less Data

It is natural to ask whether explanations can reduce data requirements. Here we explore

that question on the Toy Color dataset using four variants of A (with λ1 chosen to match

loss terms at each N).

Figure 2.12: Explanation regularization can reduce data requirements.

We find that when A is set to the Pro-Rule 1 mask, which penalizes all pixels except the

corners, we reach 95% accuracy with fewer than 100 examples (as compared to A = 0, where

we need almost 10000). Penalizing the top-middle pixels (Anti-Rule 2) or all pixels except

the top-middle (Pro-Rule 2) also consistently improves accuracy relative to data. Penalizing

the corners (Anti-Rule 1), however, reduces accuracy until we reach a threshold N. This may

be because the corner pixels can match in 4 ways, while the top-middle pixels can differ in

4 · 3 · 2 = 24 ways, suggesting that Rule 2 could be inherently harder to learn from data and

positional explanations alone.
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2.C Simultaneous Find-Another-Explanation

In Section 2.2.2, we introduced a method of training classifiers to make predictions for

different reasons by sequentially augmenting A to penalize more features. However, as

our ensemble grows, A can saturate to 1N×D, and subsequent models will be trained with

uniform gradient regularization. While these models may have desirable properties (which

we explore in the following chapter), they will not be diverse.

As a simple example, consider a 2D dataset with one class confined to the first quadrant

and the other confined to the third. In theory, we have a full degree of decision freedom; it

should be possible to learn two perfect and fully orthogonal boundaries (one horizontal, one

vertical). However, when we train our first MLP, it learns a diagonal surface; both features

have large gradients everywhere, so A = 1N×2 immediately. To resolve this, we propose a

simultaneous training procedure:

θ∗1 , . . . , θ∗M = arg min
θ1,...,θM

M

∑
a=1
L(y, f (X|θa)) +

M

∑
a=1

M

∑
b=a+1

sim( fX(X|θa), fX(X|θb)), (2.1)

where L refers to our single-model loss function, and for our similarity measure we use

the squared cosine similarity sim(v, w) = (vTw)2

(vTv)(wTw)+ε
, where we add ε = 10−6 to the

denominator for numerical stability. Squaring the cosine similarity ensures our penalty

is positive, is minimized by orthogonal boundaries, and is soft for nearly orthogonal

boundaries. We show in Figure 2.13 that this lets us obtain the two desired models.

Figure 2.13: Toy 2D problem with one degree of decision boundary freedom. Across random restarts (left
two plots), we tend to learn a boundary in which both features are significant, which prevents sequential
find-another-explanation from producing diverse models. If we jointly train two models with a penalty on the
cosine similarity of their gradients (right plot), they end up with orthogonal boundaries.
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Chapter 3

Interpretability and Robustness1

3.1 Introduction

In the previous chapter, we used input gradient penalties to encourage neural networks to

make predictions for specific reasons. We demonstrated this on “decoy” datasets deliberately

designed to deceive models making decisions for different reasons. This philosophy of test-

ing – that we should measure generalization by testing on data from a different distribution

than we trained on – can be taken to its extreme by testing models in an adversarial setting,

where neural networks have known vulnerabilities (Szegedy et al., 2013). In this chapter, we

consider whether a domain knowledge-agnostic application of explanation regularization (a

uniform L2 penalty on input gradients, similar in spirit to Ridge regression on the model’s

local linear approximations) could help defend against adversarial examples.

Adversarial examples pose serious obstacles for the adoption of neural networks in

settings which are security-sensitive or have legal ramifications (Kang and Kang, 2017).

Although many techniques for generating these examples (which we call “attacks”) require

access to model parameters, Papernot et al. (2017) have shown that it is possible and even

practical to attack black-box models in the real world, in large part because of transferability;

1Significant portions of this chapter also appear in Ross, A. and Doshi-Velez, F. (2018). Improving the
adversarial robustness and interpretability of deep neural networks by regularizing their input gradients. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.

26



examples generated to fool one model tend to fool all models trained on the same dataset.

Particularly for images, these adversarial examples can be constructed to fool models across

a variety of scales and perspectives (Athalye and Sutskever, 2017), which poses a problem

for the adoption of deep learning models in systems like self-driving cars.

Although there has recently been a great deal of research in adversarial defenses, many

of these methods have struggled to achieve robustness to transferred adversarial examples

(Tramèr et al., 2017b). Some of the most effective defenses simply detect and reject them

rather than making predictions (Xu et al., 2017). The most common, “brute force” solution

is adversarial training, where we include a mixture of normal and adversarially-generated

examples in the training set (Kurakin et al., 2016b). However, Tramèr et al. (2017a) show

that the robustness adversarial training provides can be circumvented by randomizing or

transferring perturbations from other models (though ensembling helps).

As we noted in Chapter 2, domain experts are also often concerned that DNN predictions

are uninterpretable. The lack of interpretability is particularly problematic in domains where

algorithmic bias is often a factor (Angwin et al., 2016) or in medical contexts where safety

risks can arise when there is mismatch between how a model is trained and used (Caruana

et al., 2015). For computer vision models (the primary target of adversarial attacks), the

most common class of explanation is the saliency map, either at the level of raw pixels, grid

chunks, or superpixels (Ribeiro et al., 2016).

The local linear approximation provided by raw input gradients (Baehrens et al., 2010) is

sometimes used for pixel-level saliency maps (Simonyan et al., 2013). However, computer

vision practitioners tend not to examine raw input gradients because they are noisy and

difficult to interpret. This issue has spurred the development of techniques like integrated

gradients (Sundararajan et al., 2017) and SmoothGrad (Smilkov et al., 2017) that generate

smoother, more interpretable saliency maps from noisy gradients. The rationale behind

these techniques is that, while the local behavior of the model may be noisy, examining

the gradients over larger length scales in input space provides a better intution about the

model’s behavior.
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However, raw input gradients are exactly what many attacks use to generate adversarial

examples. Explanation techniques which smooth out gradients in background pixels may

be inappropriately hiding the fact that the model is quite sensitive to them. We consider

that perhaps the need for these smoothing techniques in the first place is indicative of a

problem with our models, related to their adversarial vulnerability and capacity to overfit.

Perhaps it is fundamentally hard for adversarially vulnerable models to be interpretable.

On the other hand, perhaps it is hard for interpretable models to be adversarially

vulnerable. Our hypothesis is that by training a model to have smooth input gradients

with fewer extreme values, it will not only be more interpretable but also more resistant

to adversarial examples. In the experiments that follow we confirm this hypothesis using

uniform gradient regularization, which optimizes the model to have smooth input gradients

with respect to its predictions during training. Using this technique, we demonstrate

robustness to adversarial examples across multiple model architectures and datasets, and in

particular demonstrate robustness to transferred adversarial examples: gradient-regularized

models maintain significantly higher accuracy on examples generated to fool other models

than baselines. Furthermore, both qualitatively and in human subject experiments, we find

that adversarial examples generated to fool gradient-regularized models are, in a particular

sense, more “interpretable”: they fool humans as well.

3.2 Background

In this section, we will (re)introduce notation, and give a brief overview of the baseline

attacks and defenses against which we will test and compare our methods. The methods

we will analyze again apply to all differentiable classification models fθ(X), which are

functions parameterized by θ that return predictions ŷ ∈ RN×K given inputs X ∈ RN×D.

These predictions indicate the probabilities that each of N inputs in D dimensions belong

to each of K class labels. To train these models, we try to find sets of parameters θ∗ that

minimize the total information distance between the predictions ŷ and the true labels y (also
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∈ RN×K, one-hot encoded) on a training set:

θ∗ = arg min
θ

N

∑
n=1

K

∑
k=1
−ynk log fθ(Xn)k, (3.1)

which we will sometimes write as

arg min
θ

H(y, ŷ),

with H giving the sum of the cross entropies between the predictions and the labels.

3.2.1 Attacks

Fast Gradient Sign Method (FGSM)

Goodfellow et al. (2014) introduced this first method of generating adversarial examples

by perturbing inputs in a manner that increases the local linear approximation of the loss

function:

XFGSM = X + ε sign (∇x H(y, ŷ)) (3.2)

If ε is small, these adversarial examples are indistinguishable from normal examples to a

human, but the network performs significantly worse on them.

Kurakin et al. (2016a) noted that one can iteratively perform this attack with a small ε to

induce misclassifications with a smaller total perturbation (by following the nonlinear loss

function in a series of small linear steps rather than one large linear step).

Targeted Gradient Sign Method (TGSM)

A simple modification of the Fast Gradient Sign Method is the Targeted Gradient Sign

Method, introduced by Kurakin et al. (2016a). In this attack, we attempt to decrease a

modified version of the loss function that encourages the model to misclassify examples in

a specific way:

XTGSM = X− ε sign
(
∇x H(ytarget, ŷ)

)
, (3.3)
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where ytarget encodes an alternate set of labels we would like the model to predict instead.

In the digit classification experiments below, we often picked targets by incrementing the

labels y by 1 (modulo 10), which we will refer to as y+1. The TGSM can also be performed

iteratively.

Jacobian-based Saliency Map Approach (JSMA)

The final attack we consider, the Jacobian-based Saliency Map Approach (JSMA), also takes

an adversarial target vector ytarget. It iteratively searches for pixels or pairs of pixels in X to

change such that the probability of the target label is increased and the probability of all

other labels are decreased. This method is notable for producing examples that have only

been changed in several dimensions, which can be hard for humans to detect. For a full

description of the attack, we refer the reader to Papernot et al. (2016b).

3.2.2 Defenses

As baseline defenses, we consider defensive distillation and adversarial training. To simplify

comparison, we omit defenses (Xu et al., 2017; Nayebi and Ganguli, 2017) that are not fully

architecture-agnostic or which work by detecting and rejecting adversarial examples.

Distillation

Distillation, originally introduced by Ba and Caruana (2014), was first examined as a

potential defense by Papernot et al. (2016c). The main idea is that we train the model

twice, initially using the one-hot ground truth labels but ultimately using the initial model’s

softmax probability outputs, which contain additional information about the problem. Since

the normal softmax function tends to converge very quickly to one-hot-ness, we divide

all of the logit network outputs (which we will call ẑk instead of the probabilities ŷk) by a

temperature T (during training but not evaluation):

fT,θ(Xn)k =
eẑk(Xn)/T

∑K
i=1 eẑi(Xn)/T

, (3.4)
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where we use fT,θ to denote a network ending in a softmax with temperature T. Note that

as T approaches ∞, the predictions converge to 1
K . The full process can be expressed as

θ0 = arg min
θ

N

∑
n=1

K

∑
k=1
−ynk log fT,θ(Xn)k,

θ∗ = arg min
θ

N

∑
n=1

K

∑
k=1
− fT,θ0(Xn)k log fT,θ(Xn)k.

(3.5)

Distillation is usually used to help small networks achieve the same accuracy as larger

DNNs, but in a defensive context, we use the same model twice. It has been shown to be

an effective defense against white-box FGSM attacks, but Carlini and Wagner (2016) have

shown that it is not robust to all kinds of attacks. We will see that the precise way it defends

against certain attacks is qualitatively different than gradient regularization, and that it can

actually make the models more vulnerable to attacks than an undefended model.

Adversarial Training

In adversarial training (Kurakin et al., 2016b), we increase robustness by injecting adversarial

examples into the training procedure. We follow the method implemented in Papernot

et al. (2016a), where we augment the network to run the FGSM on the training batches

and compute the model’s loss function as the average of its loss on normal and adversarial

examples without allowing gradients to propogate so as to weaken the FGSM attack (which

would also make the method second-order). We compute FGSM perturbations with respect

to predicted rather than true labels to prevent “label leaking,” where our model learns to

classify adversarial examples more accurately than regular examples.

3.3 Gradient Regularization

We defined our “right for the right reasons” objective in Chapter 2 using an L2 penalty

on the gradient of the model’s predictions across classes with respect to input features

marked irrelevant by domain experts. We encoded their domain knowledge using an

annotation matrix A. If we set A = 1, however, and consider only the log-probabilities of
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the predicted classes, we recover what Drucker and Le Cun (1992) introduced as “double

backpropagation”, which trains neural networks by minimizing not just the “energy” of the

network but the rate of change of that energy with respect to the input features. In their

formulation the energy is a quadratic loss, but we can reformulate it almost equivalently

using the cross-entropy:

θ∗ = arg min
θ

N

∑
n=1

K

∑
k=1
−ynk log fθ(Xn)k + λ

D

∑
d=1

N

∑
n=1

(
∂

∂xd

K

∑
k=1
−ynk log fθ(Xn)k

)2

, (3.6)

whose objective we can write a bit more concisely as

arg min
θ

H(y, ŷ) + λ||∇x H(y, ŷ)||22,

where λ is again a hyperparameter specifying the penalty strength. The intuitive objective

of this function is to ensure that if any input changes slightly, the divergence between the

predictions and the labels will not change significantly (though including this term does not

guarantee Lipschitz continuity everywhere). Double backpropagation was mentioned as

a potential adversarial defense in the same paper which introduced defensive distillation

(Papernot et al., 2016c), but at publish time, its effectiveness in this respect had not yet

been analyzed in the literature – though Gu and Rigazio (2014) previously and Hein and

Andriushchenko (2017); Czarnecki et al. (2017) concurrently consider related objectives, and

Raghunathan et al. (2018) derive and minimze an upper bound on adversarial vulnerability

based on the maximum gradient norm in a ball around each training input. These works

also provide stronger theoretical explanations for why input gradient regularization is

effective, though they do not analyze its relationship to model interpretability. In this work,

we interpret gradient regularization as a quadratic penalty on our model’s saliency map.
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3.4 Experiments

Datasets and Models

We evaluated the robustness of distillation, adversarial training, and gradient regularization

to the FGSM, TGSM, and JSMA on MNIST (LeCun et al., 2010), Street-View House Numbers

(SVHN) (Netzer et al., 2011), and notMNIST Butalov (2011). On all datasets, we test a simple

convolutional neural network with 5x5x32 and 5x5x64 convolutional layers followed by

2x2 max pooling and a 1024-unit fully connected layer, with batch-normalization after all

convolutions and both batch-normalization and dropout on the fully-connected layer. All

models were implemented in Tensorflow and trained using Adam (Kingma and Ba, 2014)

with α = 0.0002 and ε = 10−4 for 15000 minibatches of size of 256. For SVHN, we prepare

training and validation set as described in Sermanet et al. (2012), converting the images to

grayscale following Grundland and Dodgson (2007) and applying both global and local

contrast normalization.

Attacks and Defenses

For adversarial training and JSMA example generation, we used the Cleverhans adversarial

example library (Papernot et al., 2016a). For distillation, we used a softmax temperature

of T = 50, and for adversarial training, we trained with FGSM perturbations at ε = 0.3,

averaging normal and adversarial losses. For gradient regularized models, we use double

backpropagation, which provided the best robustness, and train over a spread of λ values.

We choose the λ with the highest accuracy against validation black-box FGSM examples

but which is still at least 97% as accurate on normal validation examples (though accuracy

on normal examples tended not to be significantly different). Code for all models and

experiments has been open-sourced2.

2https://github.com/dtak/adversarial-robustness-public
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Figure 3.1: Accuracy of all CNNs on FGSM examples generated to fool undefended models, defensively
distilled, adversarially trained, and gradient regularized models (from left to right) on MNIST, SVHN,
and notMNIST (from top to bottom). Gradient-regularized models are the most resistant to other models’
adversarial examples at high ε, while all models are fooled by gradient-regularized model examples. On MNIST
and notMNIST, distilled model examples are usually identical to non-adversarial examples (due to gradient
underflow), so they fail to fool any of the other models.

Evaluation Metrics

For the FGSM and TGSM, we test all models against adversarial examples generated for each

model and report accuracy. Testing this way allows us to simultaneously measure white-

and black-box robustness.

On the JSMA and iterated TGSM, we found that measuring accuracy was no longer a

good evaluation metric, since for our gradient-regularized models, the generated adversarial

examples often resembled their targets more than their original labels. To investigate this,

we performed a human subject experiment to evaluate the legitimacy of adversarial example

misclassifications.
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Figure 3.2: Applying both gradient regularization and adversarial training (“both defenses”) allows us to
obtain maximal robustness to white-box and normal black-box attacks on SVHN (with a very slight label-
leaking effect on the FGSM, perhaps due to the inclusion of the ∇x H(y, ŷ) term). However, no models are able
to maintain robustness to black-box attacks using gradient regularization.

3.4.1 Accuracy Evaluations (FGSM and TGSM)

FGSM Robustness

Figure 3.1 shows the results of our defenses’ robustness to the FGSM on MNIST, SVHN,

and notMNIST for our CNN at a variety of perturbation strengths ε. Consistently across

datasets, we find that gradient-regularized models exhibit strong robustness to black-box

transferred FGSM attacks (examples produced by attacking other models). Although

adversarial training sometimes performs slightly better at ε ≤ 0.3, the value we used in

training, gradient regularization generally surpasses it at higher ε (see the green curves in

the leftmost plots).

The story with white-box attacks is more interesting. Gradient-regularized models

are generally more robust to than undefended models (visually, the green curves in the

rightmost plots fall more slowly than the blue curves in the leftmost plots). However,

accuracy still eventually falls for them, and it does so faster than for adversarial training.

Even though their robustness to white-box attacks seems lower, though, the examples

produced by those white-box attacks actually fool all other models equally well. This

effect is particularly pronounced on SVHN. In this respect, gradient regularization may
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hold promise not just as a defense but as an attack, if examples generated to fool them are

inherently more transferable.

Models trained with defensive distillation in general perform no better and often

worse than undefended models. Remarkably, except on SVHN, attacks against distilled

models actually fail to fool all models. Closer inspection of distilled model gradients and

examples themselves reveals that this occurs because distilled FGSM gradients vanish – so

the examples are not perturbed at all. As soon as we obtain a nonzero perturbation from a

different model, distillation’s appearance of robustness vanishes as well.

Although adversarial training and gradient regularization seem comparable in terms

of accuracy, they work for different reasons and can be applied in concert to increase

robustness, which we show in Figure 3.2. In Figure 3.3 we also show that, on normal and

adversarially trained black-box FGSM attacks, models trained with these two defenses are

fooled by different sets of adversarial examples. We provide intuition for why this might be

the case in Figure 3.4.

Figure 3.3: Venn diagrams showing overlap in which MNIST ε = 0.4 FGSM examples, generated for normal,
adversarially trained, and gradient regularized models, fool all three. Undefended models tend to be fooled
by examples from all models, while the sets of adversarially trained model FGSM examples that fool the two
defended models are closer to disjoint. Gradient-regularized model FGSM examples fool all models. These
results suggest that ensembling different forms of defense may be effective in defending against black box
attacks (unless those black box attacks use a gradient-regularized proxy).
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Figure 3.4: Conceptual illustration of the difference between gradient regularization and gradient masking. In
(idealized) gradient masking, input gradients are completely uninformative, so following them doesn’t affect
either the masked model’s predictions or those of any other model. In gradient regularization, gradients actually
become more informative, so following them will ultimately fool all models. However, because gradients are also
smaller, perturbations need to be larger to flip predictions. Unregularized, unmasked models are somewhere in
between. We see quantitative support for this interpretation in Figure 3.3, as well as qualitative evidence in
Figure 3.9.

TGSM Robustness

Against the TGSM attack (Figure 3.5), defensively distilled model gradients no longer

vanish, and accordingly these models start to show the same vulnerability to adversarial

attacks as others. Gradient-regularized models still exhibit the same robustness even at

large perturbations ε, and again, examples generated to fool them fool other models equally

well.

One way to better understand the differences between gradient-regularized, normal, and

distilled models is to examine the log probabilities they output and the norms of their loss

function input gradients, whose distributions we show in Figure 3.6 for MNIST. We can see

that the different defenses have very different statistics. Probabilities of non-predicted classes

tend to be small but remain nonzero for gradient-regularized models, while they vanish
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Figure 3.5: CNN accuracy on y+1 TGSM examples generated to fool the four models on three datasets
(see Figure 3.1 for more explanation). Gradient-regularized models again exhibit robustness to other models’
adversarial examples. Distilled model adversarial perturbations fool other models again since their input
gradients no longer underflow.

on defensively distilled models evaluated at T = 0 (despite distillation’s stated purpose

of discouraging certainty). Perhaps because ∇ log p(x) = 1
p(x)∇p(x), defensively distilled

models’ non-predicted log probability input gradients are the largest by many orders of

magnitude, while gradient-regularized models’ remain controlled, with much smaller means

and variances. The other models lie between these two extremes. While we do not have a

strong theoretical argument about what input gradient magnitudes should be, we believe

it makes intuitive sense that having less variable, well-behaved, and non-vanishing input

gradients should be associated with robustness to attacks that consist of small perturbations

in input space.

3.4.2 Human Subject Study (JSMA and Iterated TGSM)

Need for a Study

Accuracy scores against the JSMA can be misleading, since without a maximum distortion

constraint it necessarily runs until the model predicts the target. Even with such a constraint,
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Figure 3.6: Distributions of (L2 norm) magnitudes of FGSM input gradients (top), TGSM input gradients
(middle), and predicted log probabilities across all classes (bottom) for each defense. Note the logarithmic scales.
Gradient-regularized models tend to assign non-predicted classes higher probabilities, and the L2 norms of the
input gradients of their FGSM and TGSM loss function terms have similar orders of magnitude. Distilled
models (evaluated at T = 0) assign extremely small probabilities to all but the predicted class, and their TGSM
gradients explode while their FGSM gradients vanish (we set a minimum value of 10−20 to prevent underflow).
Normal and adversarially trained models lie somewhere in the middle.

Figure 3.7: Results of applying the JSMA to MNIST 0 and 1 images with maximum distortion parameter
γ = 0.25 for a distilled model (left) and a gradient-regularized model (right). Examples in each row start out
as the highlighted digit but are modified until the model predicts the digit corresponding to their column or the
maximum distortion is reached.

the perturbations it creates sometimes alter the examples so much that they no longer

resemble their original labels, and in some cases bear a greater resemblance to their targets.

Figure 3.7 shows JSMA examples on MNIST for gradient-regularized and distilled models

which attempt to convert 0s and 1s into every other digit. Although all of the perturbations

“succeed” in changing the model’s prediction, in the gradient-regularized case, many of the

JSMA examples strongly resemble their targets.

The same issues occur for other attack methods, particularly the iterated TGSM, for

which we show confusion matrices for different models and datasets in Figure 3.8. For the

gradient-regularized models, these psuedo-adversarial examples quickly become almost

prototypical examples of their targets, which is not reflected in accuracies with respect to

the original labels.

To test these intuitions more rigorously, we ran a small pilot study with 11 subjects
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Figure 3.8: Partial confusion matrices showing results of applying the iterated TGSM for 15 iterations at
ε = 0.1. Each row is generated from the same example but modified to make the model to predict every other
class. TGSM examples generated for gradient-regularized models (right) resemble their targets more than their
original labels and may provide insight into what the model has learned. Animated versions of these examples
can be seen at http://goo.gl/q8ZM1T.

to measure whether they found examples generated by these methods to be more or less

plausible instances of their targets.

Study Protocol

The pilot study consisted of a quantitative and qualitative portion. In the quantitative

portion, subjects were shown 30 images of MNIST JSMA or SVHN iterated TGSM examples.

Each of the 30 images corresponded to one original digit (from 0 to 9) and one model

(distilled, gradient-regularized, or undefended). Note that for this experiment, we used

∇x H( 1
K , ŷ) gradient regularization, ran the TGSM for just 10 steps, and trained models for 4

epochs at a learning rate of 0.001. This procedure was sufficient to produce examples with

explanations similar to the longer training procedure used in our earlier experiments, and

actually increased the robustness of the undefended models (adversarial accuracy tends

to fall with training iteration). Images were chosen uniformly at random from a larger set

of 45 examples that corresponded to the first 5 images of the original digit in the test set

transformed using the JSMA or iterated TGSM to each of the other 9 digits (we ensured that

all models misclassified all examples as their target). Subjects were not given the original
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MNIST (JSMA) SVHN (TGSM)
Model human

fooled
mistake
reasonable

human
fooled

mistake
reasonable

normal 2.0% 26.0% 40.0% 63.3%
distilled 0.0% 23.5% 1.7% 25.4%

grad. reg. 16.4% 41.8% 46.3% 81.5%

Table 3.1: Quantitative feedback from the human subject experiment. “human fooled” columns record what
percentage of examples were classified by humans as most plausibly their adversarial targets, and “mistake
reasonable” records how often humans either rated the target plausible or marked the image unrecognizable as
any label (N/A).

label, but were asked to input what they considered the most and second-most plausible

predictions for the image that they thought a reasonable classifier would make (entering

N/A if they thought no label was a plausible choice). In the qualitative portion that came

afterwards, users were shown three 10x10 confusion matrices for the different defenses on

MNIST (Figure 3.7 shows the first two rows) and were asked to write comments about the

differences between the examples. Afterwards, there was a short group discussion. This

study was performed in compliance with the institution’s IRB.

Study Results

Table 3.1 shows quantitative results from the human subject experiment. Overall, subjects

found gradient-regularized model adversarial examples most convincing. On SVHN and

especially MNIST, humans were most likely to think that gradient-regularized (rather

than distilled or normal) adversarial examples were best classified as their target rather

than their original digit. Additionally, when they did not consider the target the most

plausible label, they were most likely to consider gradient-regularized model mispredictions

“reasonable” (which we define in Table 3.1), and more likely to consider distilled model

mispredictions unreasonable. p-values for the differences between normal and gradient

regularized unreasonable error rates were 0.07 for MNIST and 0.08 for SVHN.

In the qualitative portion of the study (comparing MNIST JSMA examples), all of the

written responses described significant differences between the insensitive model’s JSMA
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examples and those of the other two methods. Many of the examples for the gradient-

regularized model were described as “actually fairly convincing,” and that the normal

and distilled models “seem to be most easily fooled by adding spurious noise.” Few

commentators indicated any differences between the normal and distilled examples, with

several saying that “there doesn’t seem to be [a] stark difference” or that they “couldn’t

describe the difference” between them. In the group discussion one subject remarked on

how the perturbations to the gradient-regularized model felt “more intentional”, and others

commented on how certain transitions between digits led to very plausible fakes while

others seemed inherently harder. Although the study was small, both its quantitative and

qualitative results support the claim that gradient regularization, at least for the two CNNs

on MNIST and SVHN, is a credible defense against the JSMA and the iterated TGSM, and

that distillation is not.

3.4.3 Connections to Interpretability

Figure 3.9: Input gradients ∇x H( 1
K , ŷ) that provide a local linear approximation of normal models (top),

distilled models at T = 50 (second from top), adversarially trained models (middle), and models trained with
∇x H( 1

K , ŷ) and ∇x H(y, ŷ) gradient regularization (bottom two). Whitening black pixels or darkening white
pixels makes the model more certain of its prediction. In general, regularized model gradients appear smoother
and make more intuitive sense as local linear approximations.

Finally, we present a qualitative evaluation suggesting a connection between adversarial

robustness and interpretability. In the literature on explanations, input gradients are

frequently used as explanations (Baehrens et al., 2010), but sometimes they are noisy and
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not interpretable on their own. In those cases, smoothing techniques have been developed

(Smilkov et al., 2017; Shrikumar et al., 2016; Sundararajan et al., 2017) to generate more

interpretable explanations, but we have already argued that these techniques may obscure

information about the model’s sensitivity to background features.

We hypothesized that if the models had more interpretable input gradients without the

need for smoothing, then perhaps their adversarial examples, which are generated directly

from their input gradients, would be more interpretable as well. That is, the adversarial

example would be more obviously transformative away from the original class label and

towards another. The results of the user study show that our gradient-regularized models

have this property; here we ask if the gradients are more interpretable as explanations.

In Figure 3.9 we visualize input gradients across models and datasets, and while we

cannot make any quantitative claims, there does appear to be a qualitative difference in

the interpretability of the input gradients between the gradient-regularized models (which

were relatively robust to adversarial examples) and the normal and distilled models (which

were vulnerable to them). Adversarially trained models seem to exhibit slightly more

interpretable gradients, but not nearly to the same degree as gradient-regularized models.

When we repeatedly apply input gradient-based perturbations using the iterated TGSM

(Figure 3.8), this difference in interpretability between models is greatly magnified, and the

results for gradient-regularized models seem to provide insight into what the model has

learned. When gradients become interpretable, adversarial images start resembling feature

visualizations Olah et al. (2017); in other words, they become explanations.

3.5 Discussion

In this chapter, we showed that:

• Gradient regularization slightly outperforms adversarial training (the SOTA) as a

defense against black-box transferred FGSM examples from undefended models.

• Gradient regularization significantly increases robustness to white-box attacks, though
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not quite as much as adversarial training.

• Adversarial examples generated to fool gradient-regularized models are more “univer-

sal;” they are more effective at fooling all models than examples from unregularized

models.

• Adversarial examples generated to fool gradient-regularized models are more in-

terpretable to humans, and examples generated from iterative attacks quickly come

to legitimately resemble their targets. This is not true for distillation or adversarial

training.

The conclusion that we would like to reach is that gradient-regularized models are right for

better reasons. Although they are not completely robust to attacks, their correct predictions

and their mistakes are both easier to understand. To fully test this assertion, we would

need to run a larger and more rigorous human subject evaluation that also tests adversarial

training and other attacks beyond the JSMA, FGSM, and TGSM.

Connecting what we have done back to the general idea of explanation regularization,

we saw in Equation 3.6 that we could interpret our defense as a quadratic penalty on our

CNN’s saliency map. Imposing this penalty had both quantitative and qualitative effects;

our gradients became smaller but also smoother with fewer high-frequency artifacts. Since

gradient saliency maps are just normals to the model’s decision surface, these changes

suggest a qualitative difference in the “reasons” behind our model’s predictions. Many tech-

niques for generating smooth, simple saliency maps for CNNs not based on raw gradients

have been shown to vary under meaningless transformations of the model Kindermans

et al. (2017) or, more damningly, to remain invariant under extremely meaningful ones

(Adebayo et al., 2018) – which suggests that many of these methods either oversimplify or

aren’t faithful to the models they are explaining. Our approach in this chapter was, rather

than simplifying our explanations of fixed models, to optimize our models to have simpler

explanations. Their increased robustness can be thought of as a useful side effect.

Although the problem of adversarial robustness in deep neural networks is still very
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much an open one, these results may suggest a deeper connection between it and inter-

pretability. No matter what method proves most effective in the general case, we suspect

that any progress towards ensuring either interpretability or adversarial robustness in deep

neural networks will likely represent progress towards both.
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Chapter 4

General Explanation Regularization

In the previous two chapters, we introduced the idea of explanation regularization, and

showed that we could use this to obtain models that were both simpler and more robust

to differences between training and test conditions. However, we obtained all of those

results just with L2 input gradient penalties. Although gradients have special importance in

differentiable models such as neural networks, they have major limitations, especially when

the kind of constraints we would like to impose on an explanation are abstract in a way we

cannot easily relate back to input features. So in this chapter, we outline promising avenues

towards more general forms of explanation regularization.

4.1 Alternative Input Gradient Penalties

Before we leave input gradients behind altogether, it is worth considering what else we can

do with them besides simple L2 regularization.

4.1.1 L1 Regularization

In Chapter 3, we saw that penalizing the L2 norm of our model’s input gradients encouraged

gradient interpretability and prediction robustness to adversarial examples, and drew an

analogy to Ridge regression. One natural question to ask is how penalizing the L1 norm
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Figure 4.1: Left: Accuracy loss on CIFAR-10 FGSM examples (ε = 2px) for VGG models trained with
varying levels of L1 gradient regularization. Diagonals measure white-box vulnerability and off-diagonals
measure transferability. Right: L1 vs. L2 gradient regularization on VGG as a defense against white-box
FGSM examples, 2px perturbation. The value of λ is multiplied by 100 for the L1 regularized network to
equalize penalty magnitudes (since we do not take the square root of the L2 penalty). Compared to L2, L1
gradient regularized models tend to be more robust to l∞ attacks like the FGSM, and their adversarial examples
tend to be less transferable.

instead would compare, which we could understand as a form of local linear LASSO.

For a discussion of this question with application to sepsis treatment, we refer the reader

to Ross et al. (2017a), which includes a case-study showing how L1 gradient regularization

can help us obtain mortality risk models that are locally sparse and more consistent with

clinical knowledge.

On image datasets (where input features are not individually meaningful), we do

find that L1 gradient regularization is effective in defending against adversarial examples,

perhaps more so than L2 regularization. To that end, in Figure 4.1 we present results for

VGG-16 models on CIFAR-10, which bode favorably for L1 regularization against both

white- and black-box attacks. However, although the gradients of these models change

qualitatively compared to normal models, they are not significantly sparser than gradients

of models trained with L2 gradient regularization. These results suggest that sparsity with

respect to input features may not be a fully achievable or desirable objective for complex

image classification tasks.

47



4.1.2 Higher-Order Derivatives

Bishop (1993) introduced the idea of limiting the curvature of the function learned by a neural

network by imposing an L2 penalty on the network’s second input derivatives. They note,

however, that evaluating these second derivatives increases the computational complexity of

training by a factor of D, the number of input dimensions. This scaling behavior poses major

practical problems for datasets like ImageNet, whose inputs are over 150,000-dimensional.

Rifai et al. (2011) develop a scalable workaround by estimating the Frobenius norm of the

input Hessian as 1
σ2 E

[
||∇X f (x)−∇X f (x + ε)||22

]
for ε

iid∼ N (0, σ2), which converges to the

true value as σ→ 0. They then train autoencoders whose exact gradient and approximate

Hessian norms are both L2-penalized, and find that the unsupervised representations they

learn are more useful for downstream classification tasks. Czarnecki et al. (2017) also

regularize using estimates of higher-order derivatives.

Hessian regularization may be desirable for adversarial robustness and interpretability

as well. The results in Figure 4.2 suggest that exact Hessian regularization for an MLP on a

simple 2D problem encourages the model to learn flatter and wider decision boundaries

than gradient regularization, which could be useful for interpretability and robustness.

Hessian regularization also appears to behave more sensically even when the penalty term

is much larger than the cross entropy. By contrast, in this regime, gradient regularization

starts pathologically seeking areas of the input space (usually near the edges of the training

distribution) where it can set gradients to 0.

4.2 Heftier Surrogates

While input gradient-based methods are appealing because of their close relationship to the

shape and curvature of differentiable models’ decision surfaces, they are limited by their

locality and humans’ inability to express abstract desiderata in terms of input features. This

second limitation in particular prevents us from optimizing for the kind of simplicity or

diversity humans find intuitive. Therefore, in the next sections we explore ways of training
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Figure 4.2: Gradient regularization (left) vs. Hessian regularization (right). Purple line indicates the true
decision boundary; other lines indicate level sets of a 10-hidden unit MLP’s predicted log-odds from -5 to 5
by increments of 2.5, with the model’s decision boundary in green. Hessian regularization can make decision
boundaries wider and flatter without triggering pathological cases.

models using more complex forms of explanation.

One common way of explaining complicated models like neural networks is by distilling

them into surrogate models; decision trees are a particularly popular choice Craven and

Shavlik (1996). However, these decision trees must sometimes be quite deep in order to

accurately explain the associated networks, which defeats the purpose of making predictions

interpretable. To address this problem, Wu et al. (2017) optimize the underlying neural

networks to be accurately approximatable by shallow decision trees. Performing such an

optimization is difficult because the process of distilling a network into a decision tree

cannot be expressed analytically, much less differentiated. However, they approximate it

by training a second neural network to predict the depth of the decision tree that would

result from the first neural network’s parameters. They then use this learned function as

a differentiable surrogate of the true approximating decision tree depth. Crucially, they

find a depth regime where their networks can outperform decision trees while remaining

explainable by them. Although they only try to minimize the approximating decision tree

depth, in principle one could train the second network to estimate other characteristics of

49



the decision tree related to simplicity or consistency with domain knowledge (and optimize

the main network accordingly).

4.3 Examples and Exemplars

Another popular way of explaining predictions is with inputs themselves. k-Nearest Neigh-

bors (kNN) algorithms are easy to understand since one can simply present the neighbors,

and techniques have recently been proposed to perform kNN using distance metrics derived

from pretrained neural networks (Papernot and McDaniel, 2018). More general methods

involve sparse graph flows between labeled and unlabeled inputs (Rustamov and Klosowski,

2017) or optimization to find small sets of prototypical inputs that can be used for cluster

characterization or classification (Kim et al., 2014), even within neural networks (Li et al.,

2017). There has also been recent work on determining which points would most affect a

prediction if removed from the training set (Koh and Liang, 2017). These approaches have

both advantages and disadvantages. Justifying predictions based on input similarity and

difference can seem quite natural, though it can also be confusing or misleading when the

metric used to quantify distance between points does not correspond to human intuition.

Influence functions shed light on model sensitivities that are otherwise very hard to detect,

but they are also very sensitive to outliers, leading to sometimes inscrutable explanations.

However, it seems straightforward at least in principle to implement example-based

explanation regularization. For example, we could train neural networks with annotations

indicating that certain pairs of examples should be similar or dissimilar, and penalize the

model when their intermediate representations are relatively distant or close (which might

require altering minibatch sampling to keep paired examples together if annotations are

sparse). Although influence functions may be too computationally expensive to incorporate

into the loss functions of large networks, it seems useful in principle to specify that certain

examples should be particularly representative or influential in deciding how to classify

others.
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4.4 Emergent Abstractions

Stepping back, the level of abstraction at which we communicate the reason behind a

decision significantly affects its utility, as Keil (2006) notes:

Explanations... suffer if presented at the wrong level of detail. Thus, if asked why
John got on the train from New Haven to New York, a good explanation might
be that he had tickets for a Broadway show. An accurate but poor explanation
at too low a level might say that he got on the train because he moved his right
foot from the platform to the train and then followed with his left foot. An
accurate but poor explanation at too high a level might say that he got on the
train because he believed that the train would take him to New York from New
Haven.

The explanations we have considered so far have been in terms of input features, entire

inputs, or simple surrogates. However, sometimes humans seek to know the reasons behind

predictions at levels of abstraction these forms cannot capture. If we really want to create

interpretable interfaces for training and explaining machine learning models, humans and

models will need to speak a common language that permits abstraction.

This may seem like a daunting task, but there has been important recent progress in

interpreting neural networks in terms of abstractions that emerge during training. Bau et al.

(2017) introduce a densely labeled image dataset. They train convolutional neural networks

on a top-level classification task, but also include lower-level sublabels that indicate other

features in the image. They measure the extent to which different intermediate nodes

in their top-level label classifiers serve as exclusive “detectors” for particular sublabels,

and compare the extent to which different networks learn different numbers of exclusive

detectors. They also categorize their sublabels and look at differences in which kinds of

sublabels each network learns to detect (and when these detectors emerge during training).

Kim et al. (2017) provide a method of testing networks’ sensitivity to concepts as defined

by user-provided sets of examples. Concretely, they train a simple linear classifer at each

layer to distinguish between examples in the concept set and a negative set. They reinterpret

the weights of this linear classifier as a “concept activation vector,” and take directional

derivatives of the class logits with respect to these concept activations. Repeated across the
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full dataset for many different concepts, this procedure outputs a set of concept sensitivity

weights for each prediction, which can be used for explanation or even image retrieval.

The previous two methods require manual human selection of images corresponding to

concepts, and they do not guarantee meaningful correspondence between these concepts

and what the network has learned. Feature visualization (Olah et al., 2017) takes a different

approach and attempts to understand what the network has learned on its own terms.

In particular, it tries to explain what (groups of) neuron(s) learn by optimizing images to

maximize (or minimize) their activations. It can also optimize sets of images to jointly

maximize activations while encouraging diversity. This process can be useful for obtaining

an intuitive sense of (some of) what the model has learned, especially if the neurons being

explained are class logits. However, it also leads to an information overload, since modern

networks contain millions of neurons and an effectively infinite number of ways to group

them. To that end, Olah et al. (2018) use non-negative matrix factorization (NMF) to learn a

small number of groups of neurons whose feature visualizations best summarize the entire

set. Feature visualizations of neuron groups obtained by NMF tend to correspond more

cleanly to human-interpretable concepts, though again there is no guarantee this will occur.

Olah et al. (2018) also suggest that incorporating human feedback into this process could

lead to a method to train models to make decisions “for the right reasons.”

The above cases either take humans concepts and try to map them to network repre-

sentations or take network “concepts” and try to visualize them so humans can map them

to their own concepts. But they do not actually try to align network representations with

human concepts. However, there has been significant recent interest in training models

to learn disentangled representations (Chen et al., 2016; Higgins et al., 2016; Siddharth et al.,

2017). Disentangled representations are often described as separating out latent factors that

concisely characterize important aspects of the inputs but which cannot be easily expressed

in terms of their component features. Generally, disentangled representations tend to be

much easier to relate to human-intuitive concepts than what models learn when only trained

to minimize reconstruction or prediction error.
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Figure 4.3: Accuracies of a normal model and two models trained using find-another-explanation in a
disentangled latent space (right) a toy image dataset that confounds background color and square size in
training (left) but decouples them in test. Performing find-another-explanation in a latent space allows us to
learn models that make predictions for conceptually different reasons, which is reflected in their complementary
accuracies on each version of the test set.

These advances in bridging human and neural representations could have major payoffs

in terms of interpreting models or optimizing them to make predictions for specific rea-

sons. Suppose we are interested in testing a classifier’s sensitivity to an abstract concept

entangled with our input data. If we have an autoencoder whose representation of the input

disentangles the concept into a small set of latent factors, then for a specific input, we can

encode it, decode it, and pass the decoded input through the classifier, taking the gradient

of the network’s output with respect to the latent factors associated with the concept. If

we fix the autoencoder weights but not the classifier weights, we can use this differentiable

concept sensitivity score to apply our “right for the right reasons” technique from Chapter

2 to encourage the classifier to be sensitive or insensitive to the concept.

We present a preliminary proof of concept of this idea in Figure 4.3. In this experiment,

we construct a toy dataset of images of white squares with four true latent factors of

variation: the size of the square, its x and y position, and the background color of the image.

In training, background color and square size are confounded; images either have dark

backgrounds and small squares or light backgrounds and large squares (and either one

can be used to predict the label). However, we create two versions of the test set where

these latent factors are decoupled (and only one predicts the label). This is analogous to

the parable in our introduction with squares representing tanks and background colors
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representing light. When we train a one-hidden layer MLP normally, it learns to implicitly

use both factors, and obtains suboptimal accuracies of about 75% on each test set. To

circumvent this issue, we first train a convolutional autoencoder that disentangles square

size from background color (which we do with supervision here, but in principle this can be

unsupervised) and then prepend the autoencoder to our MLP with fixed weights. We then

simultaneously train two instantiations of this network with the find-another-explanation

penalty we introduced in Section 2.C. These two networks learn to perform nearly perfectly

on one test set and do no better than random guessing on the other, which suggests they

are making predictions for different conceptual reasons. Obtaining these networks would

have been very difficult using only gradient penalties in the input space.

4.5 Interpretability Interfaces

Olah et al. (2018) describe a space of “interpretability interfaces” and introduce a formal

grammar for expressing explanations of neural networks (and a systematic way of exploring

designs). They visualize this design space in a grid of relationships between different

“substrates” of the design, which include groups of neurons, dataset examples, and model

parameters – the latter of which presents an opportunity “to consider interfaces for taking

action in neural networks.” If human-defined concepts, disentangled representations, or

other forms of explanation are included as additional substrates, one can start to imagine a

very general framework for expressing priors or constraints on relationships between them.

These would be equivalent to optimizing models to make predictions for specific reasons.

How would humans actually express these kinds of objectives? One interface worth

emulating could be that introduced by recent but popular libraries for weak supervision

(Ratner et al., 2017) or probabilistic soft logic (Bach et al., 2017), which is related to the

well-studied topic of fuzzy logic, a method noted for its compatibility with human reasoning

(Zadeh, 1997). In these frameworks, users can specify “soft” logical rules for labeling

datasets or constraining relationships between atoms (or substrates) of a system. Though

users can sometimes specify that certain rules are inviolable or highly-weighted, in general
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Figure 4.4: Schematic diagram of an interpretability interface.

these systems assume that rules are not always correct and attempt to infer weights for

each. While these inference problems are nontrivial, and in general there may be complex,

structured interactions between rules that are difficult to capture, the interface it exposes

to users is expressive and potentially worth emulating in an interpretability interface. For

example, we could imagine writing soft rules relating:

• dataset examples to each other (e.g. these examples should be conceptually similar

with respect to a task)

• dataset examples to concepts (e.g. these are examples of a concept)

• features to concepts (e.g. this set of features is related to this concept, this other set is

not; in this specific case, these features contribute positively)

• concepts to predictions (e.g. the presence of this concept makes this prediction more

or less likely, except when this other concept is present)

These rules could be “compiled” into additional energy terms in the model’s loss function,

possibly with thresholding if we expect them to be incorrect some percentage of the time

(though rules defined for specific examples may be more reliable). We present a schematic

diagram of how a system like this might work in Figure 4.4.
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Such a system would strongly depend on being able to define rules in terms of abstract

concepts, but such rules might not be enforcible until the model has a differentiable, stable

representations of them. However, one could imagine pre-learning static, disentangled

concept representations that could be related back to input features. If 1:1 mappings

between human concepts and latent representations do not emerge naturally, even allowing

for hierarchical relationships (Esmaeili et al., 2018), steps could be taken to optimize model

representations to better match human understanding (e.g. using partial supervision) or

to help humans better understand model representations (e.g. using feature visualization).

This process of reaching user-model intersubjectivity might require multiple stages of

identification and refinement, but seems possible in principle. And perhaps arriving at a

shared conceptual framework for understanding a problem is where the work of teaching

and learning ought to lie, regardless of whether the teachers and learners are human.

4.6 Discussion

In this chapter, we discussed a number of strategies for explanation regularization beyond

the methods we used in the previous chapters. We described simple extensions of gradient-

based methods (imposing L1 and Hessian penalties), strategies in terms of interpretable

surrogates (regularizing distilled decision trees, nearest neighbors, and exemplars), and

strategies in terms of concepts (concept activation vectors, disentangled representations,

and feature visualization). We then combined many of these strategies into a design for an

“interpretability interface” that could be used to simultaneously improve neural network

interpretability and incorporate domain knowledge.

One limitation of this discussion is that we only considered classification models and

traditional ways of explaining their predictions. However, there is a much larger literature

on alternative forms of explanation and prediction like intuitive theories (Gerstenberg and

Tenenbaum, 2017) or causal inference (Pearl, 2010) that is highly relevant, especially if we

want to apply these techniques to problems like sequential decisionmaking. We started this

thesis by making a point that was “easiest to express with a story;” even with arbitrarily
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human-friendly compositional abstraction (Schulz et al., 2017), flat sets of concepts may

never be sufficient in cases where users think in terms of narratives (Abell, 2004).

However, despite these limitations, we think the works we have outlined in this chapter

have started to map a rich design space for interpreting and training machine learning

models with more than just xes and ys.
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Chapter 5

Conclusion

Building on Keil (2006), Doshi-Velez and Kim (2017) argue that explanations are necessary

when our models have a certain incompleteness. In the context of this thesis, we have

considered the kind of incompleteness that results from ambiguity in a dataset. When

datasets do not fully specify their decision boundaries, we have freedom to learn many

models that could accurately classify them.1 We generate explanations to determine which

model we learned; we regularize explanations to choose which model to learn.

In Chapter 2, we provided our first formulation of explanation regularization using

input gradients, a particular kind of local explanation that is low-level but faithful and

differentiable. We then used this method to solve classification problems despite the presence

of challenging confounding factors, find diverse solutions, and achieve high accuracy with

significantly fewer training examples. In Chapter 3, we applied explanation regularization

to CNN saliency maps and showed we could make our CNNs both more interpretable

and more robust to adversarial attacks. In both chapters, we found that explanations were

reliable indicators of generalizability. In Chapter 4, we reviewed other potential ways of

implementing explanation regularization, including penalties based on alternative gradient

penalties, complex surrogates, nearest neighbors, and even abstract concepts (realized via

1Finding a way to quantify the degree of freedom a dataset affords its classifiers is an interesting topic for
future research.
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disentangled representations). Finally, we presented a vision for an interface that would

allow users and machine learning models to explain predictions to each other, using a

common conceptual framework they define together.

One methodological point we would like to stress before closing is about the importance

of ground truth in evaluating explanation techniques. Throughout this thesis, we tried to

ensure that whenever we evaluated explanations, we also had some way of determining

what those explanations should be. For example, in Chapter 2, we knew which features in

our synthetic dataset actually mattered for prediction, and we knew that models fooled

by decoy datasets were sensitive to the corresponding confounds. Regardless of whether

explanations are used in human-, application-, or functionally-grounded tasks (Doshi-Velez

and Kim, 2017), having ground truth is critical – especially given recent criticisms of many

explanation methods for being unhelpful in detecting generalization issues (Chandrasekaran

et al., 2017), being sensitive to meaningless changes to models (Kindermans et al., 2017;

Ghorbani et al., 2017), or being invariant to meaningful changes to models (Adebayo et al.,

2018). Otherwise, we may end up rationalizing our predictions rather than explaining them.

Machine learning is being deployed in more and more critical domains, including the

automotive industry, medicine, lending, bail determination (Angwin et al., 2016), and even

child maltreatment hotlines (Chouldechova et al., 2018). As we move forward, it is essential

that we develop better diagnostic tools for understanding when our models are wrong and

how to right them. The promise of machine learning to improve human lives is great, but

so is its peril. To use machine learning models responsibly, regardless of whether they seem

right, we must have methods of making sure they are reasonable.
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