
1. Introduction
Current state-of-the-art climate models solve geophysical fluid equations on horizontal grids of size 25 km and 
coarser. Models at this resolution are not able to accurately and sufficiently resolve processes with physical 
length scales smaller than the model grid, for example, convection in the atmosphere and mesoscale eddies in the 
ocean. Since increases in computational power will likely not enable climate models to resolve these processes 
before the effects of climate change ensue (Fox-Kemper et al., 2014; Schneider et al., 2017), we must represent 
subgrid-scale (SGS) processes with closure models, also known as parameterizations. Yet, these SGS models are 
some of the largest sources of bias and uncertainties in climate simulations: for example, insufficient representa-
tions of transient eddies cause biases in modeled currents and sea surface temperature in the ocean (Griffies 
et al., 2015; Hewitt et al., 2020), and the precipitation pattern is strongly sensitive to the different subgrid cloud 
closures, thereby causing significant errors in climate projections (Stevens & Bony, 2013). Therefore, developing 
robust parameterizations remains an important task toward reliable climate projections.

Abstract Recently, a growing number of studies have used machine learning (ML) models to parameterize 
computationally intensive subgrid-scale processes in ocean models. Such studies typically train ML models 
with filtered and coarse-grained high-resolution data and evaluate their predictive performance offline, 
before implementing them in a coarse resolution model and assessing their online performance. In this work, 
we systematically benchmark the online performance of such models, their generalization to domains not 
encountered during training, and their sensitivity to data set design choices. We apply this proposed framework 
to compare a large number of physical and neural network (NN)-based parameterizations. We find that the 
choice of filtering and coarse-graining operator is particularly critical and this choice should be guided by 
the application. We also show that all of our physics-constrained NNs are stable and perform well when 
implemented online, but generalize poorly to new regimes. To improve generalization and also interpretability, 
we propose a novel equation-discovery approach combining linear regression and genetic programming 
with spatial derivatives. We find this approach performs on par with neural networks on the training domain 
but generalizes better beyond it. We release code and data to reproduce our results and provide the research 
community with easy-to-use resources to develop and evaluate additional parameterizations.

Plain Language Summary Accurately predicting climate change requires running intensive 
computer simulations called climate models. Climate models divide the world into grid cells, solving an 
approximation of continuous equations that model the true dynamics. For accurate predictions, these cells 
must be small, or equivalently models must be high-resolution. However, even with modern supercomputers, 
running many high-resolution simulations is prohibitively expensive. One solution is to run climate models 
at coarser resolution, but include “subgrid parameterizations” to account for physical processes occurring at 
finer scales and correct bias. Parameterizations are usually developed by analyzing the continuous equations 
and empirically determining formulae to predict unresolved effects. However, recent studies have applied 
machine learning (ML) methods to learn parameterizations automatically from limited high-resolution data. 
This approach has shown promise, but also introduced new challenges with data set preparation, evaluation, 
interpretability, and implementation. We provide an open-source framework for learning and evaluating 
parameterizations in a simplified model of the ocean. We use this framework to evaluate numerous ML 
methods and analyze how best to prepare data sets. We also develop a method of learning equation-based 
parameterizations which can be more easily interpreted and implemented. Our approach performs comparably 
to the best ML parameterizations, but generalizes better to oceanic conditions unseen during training.
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In ocean circulation models, stratified turbulent processes are one of the primary targets of SGS closures 
(Pope, 2000; Vallis, 2017). Classic SGS models are typically designed with specific goals in mind; for example, 
to dissipate small-scale enstrophy (Smagorinsky,  1963), to reinject energy at larger scales via backscattering 
(Jansen & Held, 2014; Jansen et al., 2015), or to improve the representation of heat and tracer transport in the 
ocean interior (Gent & Mcwilliams, 1990; Gent et al., 1995; Redi, 1982). However, human choices in the design, 
formulation, and tuning of these SGS models sometimes lead to poor correlation between parameterized SGS 
forcing and true SGS forcing as diagnosed from high resolution simulations (Khani & Porté-Agel, 2017). This 
can result in unrealistic large-scale simulations despite recent progress in the representation of resolved processes 
(Fox-Kemper et al., 2019; Griffies et al., 2009). These shortcomings call for complementary, more systematic 
and data-driven approaches.

Recently, an increase in high-resolution observations and simulations combined with advances in machine-learning 
(ML) methods has propelled a surge in the development of data-driven SGS parameterizations in climate 
models (Beucler et  al.,  2021; Bolton & Zanna,  2019; Frezat et  al.,  2022; Guan et  al.,  2022; Guillaumin & 
Zanna, 2021; Krasnopolsky et al., 2010; O’Gorman & Dwyer, 2018; Rasp et al., 2018; Subel et al., 2022; Yuval 
& O’Gorman, 2021; Zanna & Bolton, 2021). Directly learning from data, ML methods automatically extract 
relevant information from observations and high-resolution simulations to improve coarse-resolution models at 
a reduced computational cost. Despite their universal approximation properties (Hornik et al., 1989), popular 
ML models such as neural networks are often opaque to interpretation and can extrapolate poorly to conditions 
unseen during training (Bolton & Zanna, 2019; O’Gorman & Dwyer, 2018; Recht et al., 2018; Subel et al., 2022).

The performance of data-driven approaches is greatly influenced by choices that must be made in data set prepa-
ration. The formulation of the subgrid forcing term, either in terms of tendency or subgrid-scale fluxes, can 
affect the stability of parameterized models (Yuval et al., 2021). Different filtering schemes also have significant 
effects on the online performance of subgrid parameterizations (Frezat et al., 2022; Piomelli et al., 1988; Zhou 
et al., 2019).

There is currently a vast number of possible choices in terms of ML models, training target formulation, and 
filtering and coarse-graining methods. However, few studies offer a direct and adequate comparison between 
data-driven ML methods and physical-based parameterizations. Moreover, well-defined quantitative (rather 
than qualitative) online metrics are lacking. In this paper, we introduce a family of data sets (Sections 2 and 3) 
and quantitative metrics (Section  4) for learning and evaluating ocean eddy subgrid parameterizations, both 
offline and online, using a quasi-geostrophic (QG) simulation (data sets and code are available open-source; see 
Appendix D). Our online metrics quantify to what extent the time-averaged spectral and distributional properties 
of parameterized simulations match those of ground-truth high-resolution simulations, as well as whether they 
improve the accuracy of more predictable short-term dynamics. These metrics make it possible to comprehen-
sively compare numerous parameterizations, and the effects of data set design choices on their performance on 
the physics of the simulations (e.g., spectral properties), climate (e.g., distributional of variables such as PV), and 
weather (e.g., the evolution of short-term forecast).

In Section 5, we perform such a study for fully convolutional neural network parameterizations, evaluating how 
offline and online performance change with different designs of inputs (i.e., types of feature variables—velocity 
or potential vorticity) and outputs (i.e., formulations of subgrid-scale forcing). Even for the best-performing 
neural networks, we find poor generalization to flow regimes unseen during training, consistent with previ-
ous literature (Bolton & Zanna, 2019; Guan et al., 2022; O’Gorman & Dwyer, 2018; Recht et al., 2018; Subel 
et al., 2021, 2022).

Motivated by these generalization issues, as well as the lack of interpretability of neural networks, there has been 
increasing interest in the physical sciences community in symbolic regression (also known as equation discovery). 
In symbolic regression, instead of an opaque model, the final output of training is a transparent equation, which 
often generalizes better (Champion et al., 2019; Mojgani et al., 2021; Rudy et al., 2017; Zanna & Bolton, 2020; 
Zhang & Lin, 2018). Many of these studies perform symbolic regression using sparse linear regression on top 
of a manually constructed basis of terms representing various operations (e.g., derivatives or multiples) of base 
features. Although powerful for small numbers of terms, this approach quickly becomes prohibitive because the 
space and time requirements grow exponentially if we consider higher-order operations.
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To address these challenges, in Section 6 we introduce a novel algorithm for equation discovery based on genetic 
programming, an alternative form of symbolic regression that is stochastic but can more efficiently explore 
higher-order operations (Koza,  1994; Schmidt & Lipson,  2009; Xing et  al.,  2022). We adapt this algorithm 
to search over spatial differential operators, and combine it with linear regression and residual-fitting to more 
efficiently and accurately fit constants. We find that the discovered expression of symbolic parameterization 
includes features discovered in prior works, is superior to traditional physics-informed turbulence SGS closures, 
has similar performance to neural networks in both offline and online metrics, and generalizes better to unseen 
flow regimes than neural networks and baseline physical parameterizations.

2. Numerical Simulations
This section describes the simulations we use to generate our data sets, which are based on pyqg (Abernathey 
et al., 2022), a Python library that models quasi-geostrophic (QG) systems using pseudo-spectral methods. QG 
systems are able to capture the generation of ocean mesoscale eddies, the key process we parameterize in this 
study, and are often used to develop and test physic-based parameterizations (P. S. Berloff, 2005; Porta Mana & 
Zanna, 2014; Jansen & Held, 2014). In addition, QG systems are a reasonable approximation to the equations of 
motion in more realistic ocean models in the limit of strong stratification and rotation. Importantly for this study, 
which tests numerous parameterizations online, they can be simulated much more efficiently than full-fledged 
ocean models or GCMs.

2.1. Idealized Two-Layer QG Model

We use a two-layer version of the QG model from pyqg. The model's prognostic variable is potential vorticity 
(PV), denoted as q1 in the upper and q2 in the lower layer:

𝑞𝑞𝑚𝑚 = ∇2𝜓𝜓𝑚𝑚 + (−1)
𝑚𝑚

𝑓𝑓 2

0

𝑔𝑔′𝐻𝐻𝑚𝑚

Δ𝜓𝜓𝜓 𝑚𝑚 ∈ {1𝜓 2}𝜓 (1)

where ψm is the streamfunction with depth Hm, 𝐴𝐴 Δ𝜓𝜓 = (𝜓𝜓1 − 𝜓𝜓2) , and 𝐴𝐴 ∇ = ⟨ 𝜕𝜕

𝜕𝜕𝜕𝜕
,

𝜕𝜕

𝜕𝜕𝜕𝜕
⟩ is the horizontal gradient 

operator. Zonal and meridional velocities are obtained from the streamfunction by the relations um = −∂yψm and 
vm = ∂xψm, for each layer with m ∈ {1, 2}. We express the horizontal velocity as a single vector um = 〈um, vm〉. We 
use the beta-plane approximation, such that the Coriolis acceleration is a linear function of latitude (y) with slope 
β, such that f = f0 + βy, and g′ is the reduced gravity.

The prognostic equations, solved in spectral space, are:

𝜕𝜕 𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕
= − 𝜕𝖩𝖩(𝜓𝜓𝑚𝑚, 𝜕𝜕𝑚𝑚) − i𝑘𝑘𝑘𝑘𝑚𝑚 𝜕𝜓𝜓𝑚𝑚 − i𝑘𝑘𝑘𝑘𝑚𝑚 𝜕𝜕𝜕𝑚𝑚 + 𝛿𝛿𝑚𝑚,2𝑟𝑟𝑒𝑒𝑘𝑘𝜅𝜅

2 𝜕𝜓𝜓2 + ŝsd, (2)

where ∂t is the Eulerian time derivative, 𝐴𝐴 (̂ ) denotes taking the Fourier transform, and 𝐴𝐴 𝐴𝐴 =
√
𝑘𝑘2 + 𝑙𝑙2  is the radial 

wavenumber, where k and l are zonal and meridional wavenumbers, respectively. 𝐴𝐴 𝖩𝖩(𝐴𝐴𝐴𝐴𝐴) = 𝐴𝐴𝑥𝑥𝐴𝐴𝑦𝑦 − 𝐴𝐴𝑦𝑦𝐴𝐴𝑥𝑥  is the 

horizontal Jacobian. The mean PV gradient in each layer is 𝐴𝐴 𝐴𝐴𝑚𝑚 = 𝐴𝐴 + (−1)
𝑚𝑚+1 𝑓𝑓2

0

𝑔𝑔′𝐻𝐻𝑚𝑚

Δ𝑈𝑈  , where ΔU = U1−U2 is 
a fixed mean zonal velocity shear between the two fluid layers. The Dirac delta function, δm,2, indicates that the 
bottom drag with coefficient rek is only applied to the second and bottom layer. 𝐴𝐴 𝐴𝐴𝐴  and 𝐴𝐴 𝐴𝐴𝐴  are related to each other via

(
𝐌𝐌 − 𝜅𝜅2

𝐈𝐈
)
⋅

⎡
⎢⎢⎣

�̂�𝜓1

�̂�𝜓2

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

𝑞𝑞1

𝑞𝑞2

⎤
⎥⎥⎦
,where 𝐌𝐌 =

⎡
⎢⎢⎣

−
𝑓𝑓2
0

𝑔𝑔′𝐻𝐻1

𝑓𝑓2
0

𝑔𝑔′𝐻𝐻1

𝑓𝑓2
0

𝑔𝑔′𝐻𝐻2

−
𝑓𝑓2
0

𝑔𝑔′𝐻𝐻2

⎤
⎥⎥⎦
, (3)

such that either q or ψ can independently identify the state of the system.

The model is solved pseudospectrally (Fox & Orszag,  1973) through inverting the velocity field and PV to 
real space, calculating the Jacobian using real-space PV fluxes, and transforming back to spectral space. The 
scale-selective dissipation (ssd), written as an additive term in Equation 2, is defined as a highly scale selective 
operator, which attenuates the last 1/3 of the spatial frequencies of the spatial frequencies of all terms on the 
right-hand side of Equation 2. More precisely, the operator takes the form of an exponential filter, Fc(κ), such that
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𝐹𝐹𝑐𝑐(𝜅𝜅
∗) =

⎧⎪⎨⎪⎩

1, 𝜅𝜅∗ < 𝜅𝜅𝑐𝑐

𝑒𝑒−23.6(𝜅𝜅
∗−𝜅𝜅𝑐𝑐)

4

, 𝜅𝜅∗ ≥ 𝜅𝜅𝑐𝑐

 (4)

where κ* is the non-dimensional radial wavenumber and κc = 0.65π, the cut-off wavenumber. After each time step, 
𝐴𝐴 𝐴𝐴𝐴𝑚𝑚(𝜅𝜅

∗) values are multiplied by Fc(κ*). Similar to the 2/3 dealiasing rule (Orszag, 1971), this filtering scheme 
reduces aliasing errors in the same range of scales, but additionally provides numerical dissipation necessary for 
stable simulations. The energetic contribution from the ssd term is relatively small (see Figure D11; energy fluxes 
are an order of magnitude lower than those shown in Figures 2d–2g, and only nonzero over a narrow range of 
wavenumbers), which is important for simulations of quasi-2D turbulence (Thuburn et al., 2014).

2.2. Model Setup

We configure the model with a doubly periodic square domain with a size of L = 10 6 m, a flat topography, and a 
total depth of H = H1 + H2, a fixed mean zonal velocity shear, ΔU with U2 = 0. We set a fixed deformation radius 
rd, which is the characteristic scale for baroclinic instability and mesoscale turbulence, using 𝐴𝐴 𝐴𝐴2

𝑑𝑑
=

𝑔𝑔′

𝑓𝑓2
0

𝐻𝐻1𝐻𝐻2

𝐻𝐻
 (see 

Table 1 for parameter values).

We select the model's grid size, Δx, in relation to the deformation radius. To resolve mesoscale eddies, one needs 
to ensure that rd/Δx is greater than 2 (Hallberg, 2013). With rd = 15,000 m, if we choose a 256 × 256 grid where 
Δxhires = L/256 = 3906.25 m, then rd/Δxhires = 3.84, so mesoscale turbulence should be well-resolved; if instead 
we choose Δxlores = L/64 = 15,625 m such that rd/Δxlores = 0.96, we expect that the simulation is unrealistic with a 
lack of mesoscale eddies. In such configuration, we would need to find a parameterization that acts at that resolu-
tion to replace the missing turbulent physics. We hereby refer simulations with a grid of 256 × 256 as “Highres,” 
and simulations with a grid of 64 × 64 as “Lores.”

All simulations are run with a numerical timestep Δt = 1 hr.

We consider two distinguishable flow regimes on which generalization properties of parameterizations can be 
tested: eddy configuration, which leads to the formation of isotropically distributed eddies, and jet configura-
tion, which leads to the formation of anisotropic jets. These configurations exemplify the two primary scaling 
regimes of meridional heat transport (Gallet & Ferrari, 2021), and we will test whether parameterizations learned 
with data from one generalize to the other. Snapshots from each are visualized in Figure 1, and the pyqg param-
eters used to generate them are given in Table 1.

2.3. Diagnostics

The physical characteristics of QG systems can be qualitatively represented by various diagnostics such as energy 
and enstrophy spectra, total kinetic energy and enstrophy, and a spectral energy budget (Marques et al., 2022; 
Yankovsky et al., 2022). Further, we also use these diagnostics quantitatively to define difference and similarity 
metrics and compare the performance across different SGS models implemented in low resolution simulations 
in Section 4.

Resolution has a strong impact on these diagnostics. In Figure 2, we show quasi-steady state statistics (spectra, 
kinetic energy timeseries, probability density function) from simulations run at multiple resolutions (48 × 48, 
64 × 64, 128 × 128, and 256 × 256 grids). The two higher-resolution simulations (L/Δx ≥ 128) show similar 
behavior, indicating near-convergence of the statistical characteristics over the wavenumber band containing most 
of the kinetic energy of mesoscale eddies. The two lower-resolution simulations (L/Δx ≤ 64) show significant 
differences due to insufficiently resolved turbulent features which affect the flow at all scales.

To identify the energy pathway of the flow, we evaluate spectral fluxes of different terms in the two-layer QG 
system. Let E(k, l) denote the total spectral energy density of the two-layer system, we have
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where * denotes complex conjugate, 𝐴𝐴 ℝ denotes real part, j is the imaginary unit, and the terms on the right-hand 
side are the spectral contributions from kinetic energy flux (KE flux), available potential energy flux (APE flux), 
available potential energy generation (APE gen), and bottom drag, respectively.

The lower row of Figure 2 demonstrates the typical energy cycle in QG turbulence (Salmon, 1980; Vallis, 2017): 
the potential energy of fluctuations is extracted from the prescribed mean flow (APE gen) and cascades toward 
small scales up to the deformation radius (APE flux) where it is converted to kinetic energy due to baroclinic 
instability (not shown). The kinetic energy then flows back to large scales following the inverse energy cascade 
(KE flux), where it is ultimately dissipated by friction (bottom drag).

The coarse resolution models (L/Δx ≤ 64) poorly resolve the formation of mesoscale eddies due to baroclinic 
instability and their enlargement due to the inverse energy cascade (Zanna et al., 2020), leading to underestimated 
extraction of energy from the mean flow and a breakdown in the energy cycle.

A promising approach to avoid this breakdown is to supplement the resolved kinetic energy flux with a so-called 
“backscatter” parameterization (Jansen & Held, 2014; Porta Mana & Zanna, 2014) which energize eddies. We 
believe that efficient subgrid parameterizations should simulate backscatter at eddy permitting resolution, but 
also other processes that may matter, such as dissipation. In this paper we do not study precisely which physics 
are parameterized with data-driven subgrid models, but instead quantify how they influence the resolved energy 
cycle.

3. Diagnosing Subgrid Forcing
The goal of our work is to learn models that, given only low-resolution inputs, can predict the subgrid forcing, 
S, missing from a low-resolution QG model (Equation 6). To do that, we need to first quantify subgrid forcing, 
which is generally done by filtering and coarse-graining high-resolution simulations. This is done sometimes 
under the implicit assumption that coarsened high-resolution data will have a similar enough distribution to 
low-resolution data that the same data-driven parameterizations will work for both. We use 𝐴𝐴 ( )  to denote a generic 

Figure 1. (a and e) Snapshots of upper and (b and f) lower potential vorticity (PV), (c and g) barotropic kinetic energy, and (d 
and h) barotropic enstrophy for simulations run for 10 years in eddy (a–d) and jet (e–h) configurations over a square, doubly 
periodic domain of length 10 6 m. Eddy configuration results in an approximately isotropic distribution of vortices, while jet 
configuration results in the formation of stable, long-lived jets with more coherent latitudinal structure.
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filtering and coarse-graining operator. However, the choice of filtering and coarse-graining and the choice of 
subgrid forcing terms to learn are not uniquely defined.

In Sections 3.1 and 3.2, we present several options for how to define subgrid forcing terms in their continuous 
forms. Specifically, we consider a forcing S in the PV equation that can be added to a coarse resolution simulation 
to improve its physics such that

𝜕𝜕�̂�𝑞𝑚𝑚

𝜕𝜕𝜕𝜕
= −

̂
𝖩𝖩
(
𝜓𝜓𝑚𝑚, 𝑞𝑞𝑚𝑚

)
− i𝑘𝑘𝑘𝑘𝑚𝑚�̂�𝜓𝑚𝑚 − i𝑘𝑘𝑘𝑘𝑚𝑚�̂�𝑞𝑚𝑚 + 𝛿𝛿𝑚𝑚,2𝑟𝑟𝑒𝑒𝑘𝑘𝜅𝜅

2�̂�𝜓2 + ŝsd + �̂�𝑆, (6)

where S can take the form of 𝐴𝐴

{
𝑆𝑆𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑆𝑆𝑞𝑞,∇ ⋅ 𝝓𝝓𝑞𝑞, curl(𝑆𝑆𝑢𝑢, 𝑆𝑆𝑣𝑣), curl

(
∇ ⋅𝚽𝚽𝐮𝐮

)}
 , (detailed in Sections 3.1 and 3.2).

In Section 3.3, we discuss the contribution of the forcing term to the energy budget. Finally, in Section 3.4, we 
describe three different filtering and coarse-graining options applied in this work.

3.1. Subgrid Forcing of Potential Vorticity

We consider three different definitions of subgrid PV forcing for each fluid layer of the QG model: a total 
tendency, 𝐴𝐴 𝐴𝐴𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡  , which is computed online as the residual between the low-res and high-res simulation (e.g., P. S. 

Figure 2. Comparison of time-averaged kinetic energy power spectra summed over fluid layers (a), time-series of total kinetic energy, (b), spatially flattened 
probability distribution of upper layer PV (c), and spectral energy flux terms (d–g) for eddy configuration simulations at multiple horizontal resolutions: L/Δx = 256, L/
Δx = 128, L/Δx = 64, and L/Δx = 48. Higher-resolution simulations (L/Δx ≥ 128) converge, while lower-resolution simulations (L/Δx ≤ 64) differ from each other and 
from the higher-resolution simulations.

Table 1 
Table of Parameters Used in Eddy and Jet Configuration

Config. β 𝐴𝐴

[
1

𝑚𝑚𝑚𝑚

]
𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒

[
1

𝑠𝑠

]
 H1 [m] H2 [m] 𝐴𝐴 Δ𝑈𝑈

[
𝑚𝑚

𝑠𝑠

]
 𝐴𝐴 𝐴𝐴′

[
𝑚𝑚

𝑠𝑠2

]
 rd [m]

Eddy 1.5e−11 5.787e−07 500 2,000 0.025 9.81 15,000

Jet 1.0e−11 7.0e−08 500 5,000 0.025 9.81 15,000
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Berloff, 2005; Brenowitz & Bretherton, 2018); the subgrid forcing due to nonlinear advection, Sq; and the subgrid 
flux divergence forcing, 𝐴𝐴 ∇ ⋅ 𝝓𝝓𝑞𝑞  .

3.1.1. Total Tendency (Nonlinear Advection and Numerical Dissipation)

Let 𝐴𝐴 𝐴𝐴𝐻𝐻
𝑡𝑡

 and 𝐴𝐴 𝐴𝐴𝐿𝐿
𝑡𝑡

 denote tendency functions from the high- and low-resolution models, respectively (dropping 
subscripts referring to the model layer for simplicity). For any given high-resolution q, we can express its total 
subgrid forcing (P. Berloff et al., 2021; Kent et al., 2016; Porta Mana & Zanna, 2014; Shevchenko & Berloff, 2021) 
due to the differences between the high- and low-resolution models with respect to 𝐴𝐴 ( )  as

𝑆𝑆𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜕𝜕𝐻𝐻
𝑡𝑡
𝑞𝑞 − 𝜕𝜕𝐿𝐿𝑡𝑡 𝑞𝑞𝑞 (7)

We compute this quantity by setting the initial conditions of the high- and low-resolution models to be q and 𝐴𝐴 𝑞𝑞  , 
respectively, taking a single step forward with equal Δt, and subtract the tendency of the low-resolution model 
from the filtered and coarse-grained tendency of the high-resolution model.

3.1.2. Subgrid Tendency Due To Nonlinear Advection

Another commonly used definition of subgrid forcing considers the unresolved nonlinear advection (Beck 
et al., 2019; Bolton & Zanna, 2019; Guan et al., 2022; Guillaumin & Zanna, 2021; Maulik et al., 2019; Xie 
et al., 2020; Zanna & Bolton, 2020), which can be expressed as

𝑆𝑆𝑞𝑞 = (𝐮𝐮 ⋅ ∇)𝑞𝑞 −

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞𝑞 (8)

where 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)
 denotes the advection operator defined on the coarse grid. Note that following Grooms et al. (2013) 

and Porta Mana and Zanna (2014), we define the filtered and coarsened velocity 𝐴𝐴 𝐮𝐮  by inverting the filtered and 
coarsened PV 𝐴𝐴 �̂�𝑞  to 𝐴𝐴 �̂�𝜓  using Equation 3, multiplying 𝐴𝐴 �̂�𝜓  by ik and il, and applying an inverse Fast Fourier Trans-
form (FFT) to obtain 𝐴𝐴 �̂�𝑢  and 𝐴𝐴 �̂�𝑣  , respectively.

3.1.3. Flux Divergence Subgrid Tendency

One difficulty in parameterizing subgrid forcing is that naive ML parameterizations may not obey conservation 
laws, for example, for momentum and vorticity. Many physical parameterizations are formulated as divergences 
of fluxes to satisfy conservation laws by the divergence theorem. Ideally, we want to learn ML parameteri-
zations which behave similarly. One approach is to train ML models to predict subgrid forcing (e.g., Sq) but 
incorporate a numerical divergence operation into their architectures (e.g., as the final layer of a neural network, 
see Zanna and Bolton [2020]). Another is to diagnose a different quantity whose divergence equals the subgrid 
forcing (Pawar et al., 2020; Stoffer et al., 2021; Yuval et al., 2021), train ML models to predict this quantity (i.e., 
the subgrid flux) directly, and compute divergences outside the learned model as part of the implementation of 
parameterization.

To enable experimentation with this second approach, we define a “subgrid flux” that will be predicted by the FCNN

𝝓𝝓𝑞𝑞 = 𝐮𝐮𝑞𝑞 − �̄�𝐮𝑞𝑞𝑞 (9)

Under the assumption that the flow is incompressible (i.e., that 𝐴𝐴 ∇ ⋅ 𝐮𝐮 ≈ ∇ ⋅ 𝐮𝐮 ≈ 0  ) and that differentiation 
commutes with filtering and coarsening, we can show that

∇ ⋅ 𝝓𝝓𝑞𝑞 = ∇ ⋅

(
𝐮𝐮𝑞𝑞 − 𝐮𝐮 𝑞𝑞

)
≈ 𝑆𝑆𝑞𝑞. 

These three formulations (Sq, 𝐴𝐴 𝐴𝐴𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡  , and 𝐴𝐴 ∇ ⋅ 𝜙𝜙𝑞𝑞  ) are always highly correlated and often nearly identical, but 
the exact value of this correlation (especially for 𝐴𝐴 ∇ ⋅ 𝜙𝜙𝑞𝑞  vs. the others) can range from 0.75 to 1–10 −14, 
depending on the layer, timestep, configuration, and especially the filtering and coarse-graining operator 
(Section 3.4).
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3.2. Subgrid Forcing of Velocity

Realistic ocean models use velocity as their prognostic variable with temperature and salinity, rather than PV. 
Many studies have focused on momentum subgrid closures (Guillaumin & Zanna, 2021; Zanna & Bolton, 2020). 
Here, we define momentum forcing which is later related to the subgrid PV forcing.

The first definition involves the advection-based subgrid momentum forcing given by

𝐒𝐒𝐮𝐮 = (𝐮𝐮 ⋅ ∇)𝐮𝐮 −

(
𝐮𝐮 ⋅ ∇

)
𝐮𝐮. (10)

Analogous to Equation 9, we also define momentum subgrid flux terms as

�� = �� − � �,

�� = �� − � �.
 (11)

We use Φu = (ϕu, ϕv) to denote the matrix of all four terms of the stress tensor, with a total forcing 𝐴𝐴 ∇ ⋅𝚽𝚽𝐮𝐮  where 
the y-component of ϕu is equal to the x-component of ϕv.

Given that the PV flux is composed of two parts: the relative vorticity flux and the buoyancy or thickness flux, 
we note that the relative vorticity flux is related to the momentum flux via the curl operator (Killworth, 1997; 
Vallis, 2017). In our simulations, we update the PV tendency with the curl of subgrid momentum forcing, for 
example, curl(Su, Sv) = ∂xSv−∂ySu, which serves as a momentum parameterization in QG equations (similarly 
for Φu). Note that curl(Su, Sv) is different from Sq when obtained from the respective coarse-grained fluxes: 
correlations between the two terms range from +0.2 to −0.4 depending on the filtering and coarse-graining 
operator.

3.3. Contribution of Forcing to Diagnostics

Similar to Equation 5, we derive the spectral contribution of subgrid-scale forcing toward total energy
(
𝜕𝜕𝜕𝜕(𝑘𝑘𝑘 𝑘𝑘)

𝜕𝜕𝜕𝜕

)sub

= −
1

𝐻𝐻

2∑
𝑚𝑚=1

𝐻𝐻𝑚𝑚ℝ
[
�̂�𝜓∗

𝑚𝑚�̂�𝑆𝑚𝑚

]
𝑘 (12)

where 𝐴𝐴 �̂�𝑆𝑚𝑚  denotes the spectral PV tendency induced by the SGS model in the mth layer. This equation states 
that the total tendency induced by the subgrid term can be written as the projection of subgrid tendency onto the 
streamfunction in each layer.

3.4. Coarse-Graining and Filtering

We are using a combination of filtering and coarse-graining to diagnose the subgrid forcing. There are a number 
of possible ways to filter and coarse-grain simulations. Filtering can be identified by various convolutional kernels 
(top-hat, Gaussian, e.g., Sagaut  [2006]), which can be approximated on a given mesh with quadrature rules 
(Guillaumin & Zanna, 2021; Xie et al., 2020), polynomials based on Laplacian operator (Grooms et al., 2021; 
Sagaut & Grohens, 1999) or applied in spectral space (Guan et al., 2022). Coarse-graining methods include spec-
tral truncation (Thuburn et al., 2014), averages over boxes (Beck & Kurz, 2021; Porta Mana & Zanna, 2014) or 
subsampling (Xie et al., 2020, i.e., selection of every K′s point).

The combination of filtering and coarse-graining has also been shown to reduce aliasing in the computa-
tion of subgrid forcing (Zanna & Bolton,  2021). Here, rather than focusing on one method for filtering and 
coarse-graining, we examine the sensitivity of our results to three different operators for diagnosing the subgrid 
forcing in our simulations: two different filters in spectral space (referred to as “Operator 1” and “Operator 2”), 
and one filter in real space (and “Operator 3”).

For Operator 1 and Operator 2, given that pyqg is a pseudo-spectral model, it is natural to use spectral methods 
to perform coarse-graining and filtering. For data generation, we first coarse-grain and then filter, which are 
commutative for elementwise spectral filtering operators, so can be done in whichever order is most convenient. 
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Coarse-graining is done by coarse-graining the simulation by a factor of K, or more precisely, truncating the set 
of spatial modes of 𝐴𝐴 𝐴𝐴𝐴  by only keeping the first 1/K. For example, in the case of going from resolution 256 × 256 
to 64 × 64, we start with a 𝐴𝐴 𝐴𝐴𝐴  with 128 modes and only keep the first 32. Spectral filtering generally consists of 
applying selective decay that reduces the strength of the highest frequencies, whereas low-frequency components 
are mostly retained after truncation. Here, we use two different filtering methods (Sections 3.4.1 and 3.4.2).

Finally, to mimic the procedure necessary for ocean models which are not run in spectral space, we convert our 
output to a Cartesian grid and applying filtering and coarse-graining in real space (“Operator 3,” Section 3.4.3).

3.4.1. Operator 1: Spectral Truncation, Sharp Filter

The first option is implemented by simply applying the same quadruple-exponential filter used by pyqg to imple-
ment small-scale dissipation in Equation 4. This filter leaves small wavenumbers unchanged but attenuates wave-
numbers above a cutoff threshold κ c ≡ 2/3 of the low-resolution model's Nyquist frequency:

�̂�𝑞𝜅𝜅 =

⎧⎪⎨⎪⎩

𝑞𝑞𝜅𝜅, 𝜅𝜅 𝜅 𝜅𝜅𝑐𝑐

𝑞𝑞𝜅𝜅 ∗ 𝑒𝑒
−23.6(𝜅𝜅−𝜅𝜅𝑐𝑐 )4Δ𝑥𝑥4

lores , 𝜅𝜅 ≥ 𝜅𝜅𝑐𝑐.
 (13)

In some sense, this is the most conservative choice of filter possible (i.e., closest to not filtering at all), since it 
will already be applied within the ocean model. We use “Operator 1” to refer to spectral truncation followed by 
the application of this filter.

3.4.2. Operator 2: Spectral Truncation, Softer Gaussian Filter

The second spectral filtering option considered (“Operator 2”) is to instead apply the following Gaussian filter 
to all remaining modes:

�̂�𝑞𝜅𝜅 = 𝑞𝑞𝜅𝜅 ∗ 𝑒𝑒−𝜅𝜅
2(2Δ𝑥𝑥lores)

2
∕24 (14)

This choice of filter is based on Guan et al. (2022) and Pope (2000). According to the definition of the filter width 
given by Lund (1997), this filter is twice as large as the grid size of the coarse model.

3.4.3. Operator 3: Diffusion-Based Filtering, Real-Space Coarsening

Finally, we consider a procedure which is closer to the procedure needed for ocean models. We apply GCM-Filters 
(Grooms et al., 2021; Loose et al., 2022), a recent filtering method which approximates the spectral transfer func-
tion of Gaussian filter with polynomials based on the Laplacian diffusion operator, converting our pyqg output 
to a Cartesian grid. We then coarse-grain the filtered output in real space. To reduce the resolution by a factor of 
K, we average the input field over non-overlapping boxes of K × K points. We call this procedure “Operator 3.”

A comparison of the effects of these different filtering and coarse-graining operators on PV and its subgrid forc-
ing is shown in Figures 3 and 4.

3.5. Comments Regarding Notation

We use superscripts (1), (2), and (3) (for Operators 1, 2, and 3, respectively) to describe subgrid forcing computed 
with each operator. For example, 𝐴𝐴 𝐴𝐴

(1)
𝑞𝑞  signifies the subgrid tendency due to nonlinear advection diagnosed by 

Equation 8 and computed with the operator from Section 3.4.1, while 𝐴𝐴 𝚽𝚽
(3)
𝐮𝐮  signifies the tensor of velocity subgrid 

fluxes diagnosed by Equation 11 and computed with the operator from Section 3.4.3.

In addition, we use 𝐴𝐴 ( )  to refer to all low-resolution variables, whether coarse-grained from a high-resolution simu-
lation or natively from a low-resolution simulation. The reason is that we evaluate parameterizations offline over 
filtered and coarse-grained high resolution variables, but evaluate parameterizations online over low-resolution 
variables. Although these variables can be different in various respects (e.g., may be differently distributed), 
when learning data-driven parameterizations from subgrid forcing data collected offline, we necessarily assume 
that one will generalize to the other. Though this is an assumption we explicitly test in online evaluation.
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In the remaining text, we also simplify 𝐴𝐴 ∇  to just ∇ for conciseness. It should be treated as 𝐴𝐴 ∇  when applied to a 
coarsened or low-resolution variable.

4. Metrics
In the sections that follow, we evaluate a large number of parameterizations on data generated with different 
operators and forcing formulations, as well as different inputs and architectures. Given that the models are too 
numerous to manually inspect, we define several levels of metrics to quantify their performance. In Section 4.1, 
we define metrics which can be evaluated offline, that is, on held-out testing sets of subgrid forcing data. In 
Section  4.2, we define online metrics that measure the similarity of low-resolution simulations run with the 
parameterization to high-resolution simulations. These metrics account for (a) aspects of the model physics (e.g., 
kinetic energy flux at different scales), (b) the climatological biases and characteristics of key variables (e.g., 

Figure 4. (a) Energy redistribution, Equation 12 and (b) power spectra of Sq by filtering and coarse-graining operator 
(computed on eddy configuration data, averaged over time, and summed across layers). Each operator produces forcing which 
redistributes energy differently across scales with different spatial spectra. See Figure 3 for comparisons of forcing snapshots.

Figure 3. Comparison of the effects of three different methods of filtering and coarse-graining 256 × 256 eddy configuration 
initial states (a) to 64 × 64 (b–d), (e–g) along with resulting forcing terms Sq, defined in Equation 8. (b and e) Operators 1 and 
(c and f) 2 truncate Fourier modes and apply sharp and soft spectral filters, respectively, while (d and g) Operator 3 applies 
diffusion-based filtering and averaging in real space. See Section 3.4 for operator definitions and Figure 4 for comparisons of 
associated spectral properties.
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distributions of potential vorticity), and (c) the forecast skill of the simulation (e.g., decorrelation timescales of 
short term forecasts).

4.1. Offline

Offline metrics quantify the parameterization's skill at predicting its intended target. For each fluid layer, we 
consider:

1.  The coefficient of determination (R 2), 𝐴𝐴 1 −
𝔼𝔼

[
(𝑆𝑆−�̂�𝑆)

2
]

𝔼𝔼

[
(𝑆𝑆−𝔼𝔼[𝑆𝑆])2

]  , which is 1 when predictions are perfect, 0 when predic-

tions are no better than always predicting the mean, and negative when worse than always predicting the mean.
2.  Pearson correlation (ρ), 𝐴𝐴

Cov(𝑆𝑆𝑆�̂�𝑆)
𝜎𝜎𝑆𝑆𝜎𝜎�̂�𝑆

 , where σ denotes the empirical standard deviation of a quantity over the data 

set. This quantity is between −1 and 1 and can remain high even when R 2 is negative, for example, if predic-
tions are wrong by a large but consistent scaling factor.

These metrics are evaluated on held-out data sets of filtered and coarse-grained high-resolution simulations from 
both eddy and jet configurations. They can either be aggregated over time and space or expressed as functions 
of time or space. In addition, we visualize the power and energy redistribution spectra of the predicted subgrid 
forcing and compare them to the corresponding quantities for the ground-truth forcing.

4.2. Online

In contrast to offline metrics, we evaluate online metrics by initializing a new QG simulation at low resolution 
and, at every time step, passing its state to the parameterization and adding the parameterization's output to the 
PV tendency. The distribution of these low-resolution states may therefore be different, but by analyzing the 
ultimate results and testing for various forms of consistency with high-resolution results (i.e., online metrics), we 
can evaluate whether the parameterization is effective at improving the model physics and/or the climatological 
or forecast skill.

To compute such online metrics, we first run 5 parameterized low-resolution simulations for 10 years in 
both eddy and jet configurations initialized from different random states, saving all state variables and 
diagnostics described in Section 2.3. We then compute distance metrics between the (statistical and spec-
tral) distributions of these variables from the parameterized low-resolution simulation and those from 5 
simulations run at high resolution in corresponding configurations. Finally, we normalize these distances 
by the corresponding metrics for unparameterized low-resolution simulations to obtain more interpretable 
similarity scores.

4.2.1. Differences Between Time-Averaged Power Spectra and Fluxes

Some of the most important characteristics of simulations are how energy and enstrophy distribute and flow 
across scales, which we measure using power spectra and the spectral flux diagnostics described in Section 2.3. 
Ideally, a parameterized simulation should match a high-resolution simulation with respect to all such quantities.

For both power spectra and fluxes, we compute a total root mean squared difference between curves f:

𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍(𝚜𝚜𝚍𝚍𝚜𝚜𝚜𝚜, 𝚜𝚜𝚍𝚍𝚜𝚜𝚜𝚜; 𝑓𝑓 ) ≡

√
1

||
∑
𝑘𝑘∈

(𝑓𝑓𝚜𝚜𝚍𝚍𝚜𝚜𝚜𝚜(𝑘𝑘) − 𝑓𝑓𝚜𝚜𝚍𝚍𝚜𝚜𝚜𝚜(𝑘𝑘))
2 (15)

where 𝐴𝐴   is a suitably chosen set of isotropic wavenumbers common to both simulations. In our case, 𝐴𝐴   is 
evenly distributed in log space and is up to 2/3 of the Nyquist frequency of the low-resolution simulation 
(≈1.07 × 10 −5m −1). We compute this metric for the energy and enstrophy power spectra in each layer and 
for the spectral energy fluxes (KE flux, APE flux, APE generation, and bottom drag), yielding a total of 8 
metrics. The contribution of parameterizations toward total energy (Equation 12) is added onto the KE flux 
term for parameterized low-resolution simulations. An illustration of this kind of distance metric is shown 
in Figure 5a.
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4.2.2. Differences Between Spatially Flattened Probability Distributions

We also consider differences between the empirical distributions of various quantities in different simulations at 
the end of the simulation, which we measure with earth mover's distance or Wasserstein distance (Monge, 1781; 
Rubner et al., 2000):

𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍(𝚍𝚍𝚍𝚍𝚜𝚜𝚜𝚜, 𝚍𝚍𝚍𝚍𝚜𝚜𝚜𝚜; 𝑓𝑓 ) ≡
∫

∞

−∞

|𝑃𝑃𝚍𝚍𝚍𝚍𝚜𝚜𝚜𝚜(𝑓𝑓 ≤ 𝑥𝑥) − 𝑃𝑃𝚍𝚍𝚍𝚍𝚜𝚜𝚜𝚜(𝑓𝑓 ≤ 𝑥𝑥)| d𝑥𝑥, (16)

where 𝐴𝐴 𝐴𝐴𝚜𝚜𝚜𝚜𝚜𝚜(𝑓𝑓 ≤ 𝑥𝑥) is a cumulative distribution function of quantity f in a given simulation. If we imagine the 
two probability density functions as mounds of earth, this metric corresponds to the minimum amount of work 
required to move all the mass from one mound to the other. For 1-dimensional distributions, it reduces to the inte-
gral of the difference in each cumulative distribution function, which we approximate empirically. We compute 
these differences for the quasi-steady-state distributions (marginalized over space and at the final timestep) of u, 
v, q, the kinetic energy density (u 2 + v 2)/2, and enstrophy curl 2(u)/2 at each layer. This leads to 10 total metrics 
for each simulation.

Note that when comparing low-resolution to high-resolution metrics, we are comparing the distributions of, 
for example, u and 𝐴𝐴 𝑢𝑢  , so histograms are appropriately normalized. An illustration of this kind of comparison is 
shown in Figure 5b, though for brevity we show only the difference in the integrals of PDFs rather than the inte-
grals of the corresponding CDFs (which gives the exact value of 𝐴𝐴 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 ).

4.2.3. Differences in Decorrelation Times

The previous metrics consider whether aggregate, long-term simulation statistics (i.e., “climate”) match those 
of high-resolution simulations. Arguably, though, parameterizations should also improve the similarity of short-
term trajectories (i.e., “weather”) between low- and high-resolution simulations—or at least not significantly 
worsen it.

We measure this short-term similarity by defining a “decorrelation time” metric, that is, minimum time t to 
achieve correlation δ from above, averaged over ensemble of initial conditions q0 and their perturbations ϵ

𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚝𝚝𝚝𝚝𝚝𝚝𝚍𝚍(𝚜𝚜𝚝𝚝𝚝𝚝𝚜𝚜, 𝚜𝚜𝚝𝚝𝚝𝚝𝚜𝚜) ≡ 𝔼𝔼𝑞𝑞0 ,𝜖𝜖

[
min

𝑡𝑡

{
𝑡𝑡 ∶ Corr

(
𝑞𝑞
(𝑡𝑡)

𝚜𝚜𝚝𝚝𝚝𝚝𝚜𝚜
(𝑞𝑞0), 𝑞𝑞

(𝑡𝑡)

𝚜𝚜𝚝𝚝𝚝𝚝𝚜𝚜
(𝑞𝑞0 + 𝜖𝜖)

)
≤ 𝛿𝛿

}]
 (17)

where each 𝐴𝐴 𝐴𝐴
(𝑡𝑡)

𝚜𝚜𝚜𝚜𝚜𝚜
(𝐴𝐴0) denotes a snapshot of the PV for the given simulation integrated for time t starting from an 

initial condition q0 sampled from the quasi-steady state, ϵ is a small independent Gaussian perturbation with 
standard deviation 10 −10, and δ = 0.5. When 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜 and 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜 have the same dimensionality, Corr denotes the 
simple Pearson correlation; when they have different dimensionalities (i.e., if 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜 is higher resolution than 

𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜 ), we compute the correlation after filtering and coarse-graining the higher-resolution simulation to the 
resolution of the other simulation using Operator 1 (Equation  13). We approximate expectations 𝐴𝐴 𝔼𝔼𝑞𝑞0 ,𝜖𝜖  using 
empirical averages over 5 random samples of q0, ϵ, and we use the same random high-resolution q0 for all 
low-resolution models so that correlation trends for different low-resolution models can be paired.

Figure 5. Illustration of the three types of difference metrics defined in Section 4.2. (a) spectral_diffs compute the RMSE between different quantities summed 
over isotropic wavenumber κ. (b) distrib_diffs compute the earth mover's distance between the marginal distributions of variables at the end of the simulation. (c) 
decorr_diff estimates how much faster a given simulation diverges from a high-resolution simulation when starting from the same random initial state.
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With a decorrelation time now defined, we can compare the expected time 
it takes for one type of simulation to fall out of sync with another, versus the 
expected time it takes for one simulation to fall out of sync with a perturbed 
version of itself:

������_����(����, ����) ≡ ������_����(����, ����)
−������_����(����, ����),

 (18)

In our study, 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜 is a high-resolution simulation, which stays correlated 
with a perturbed version of itself for a relatively long time, while 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜 will 
be a low-resolution simulation. With the eddy configuration, the correlation 
of high-resolution simulations stays above 0.5 for about 1 year (black vertical 
line in Figure  5c; this roughly quantifies the limit of predictability of the 
system), whereas unparameterized low-resolution simulations remain >0.5 
correlated for about 2 months (gray vertical line in Figure 5c), leading to a 

𝐴𝐴 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 of 10 months (red arrow in Figure 5c). For a parameterized 
low-resolution simulation, we might hope that its 𝐴𝐴 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 is lower than 
that of the low-resolution model (e.g., 8 months), indicating that its short-
term evolution is more consistent with that of the high-resolution model.

4.2.4. From Difference to Similarity

One issue with defining such a variety of distance metrics is that they become difficult to compare especially 
when they have different units. However, for any particular metric, what we care about is not its actual value but 
whether it is smaller for parameterized simulations (vis-à-vis Highres simulations) than for low-res simulations. 
To that end, we re-express our distance metrics as similarity scores that quantify how much closer parameterized 
models are to high-res than to low-res:

Similarity(param, high − res; 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍) ≡ 1 −
𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍(param, high − res)

𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍(low − res, high − res)
.

 (19)

This similarity score is approximately 1 if the parameterized model's distance to the high-res model is much 
smaller than that of the low-res model (and exactly 1 for the high-res model); it is approximately 0 if this distance 
is approximately equal to that of the low-res model (and exactly 0 for the low-res model), and is less than 0 if the 
distance is larger than that of the low-res model. An example is shown in Figure 6. We also include a validation 
of the consistency of these scores with respect to high- and low-resolution simulations generated with different 
random initial conditions in Figure D10. In general, we evaluate our online results using similarity scores.

Note that there are many alternative metrics that could have been selected (e.g., RMSE for decorrelation timescales, 
Kullback-Leibler for probability distributions (Kullback & Leibler, 1951), absolute error for differences in spectra, 
etc), that may augment the set defined here to focus on other aspects of the simulations (e.g., extreme events).

4.3. Experimental Setup

With our data sets and metrics now defined, we now describe our experiments to learn and evaluate parameteri-
zations. In total, we test 148 parameterizations—105 fully convolutional neural networks (FCNNs) trained with 
different data set design decisions (described in Section 5), a hybrid linear and symbolic regression method using 
genetic programming (described in Section 6), and 42 different parameter settings spread over three baseline 
physical parameterizations: symbolic regression from Zanna and Bolton  (2020), backscatter from Jansen and 
Held (2014), and Smagorinsky (1963), all three described in Appendix A.

The trained parameterizations are evaluated offline and also implemented into the coarse resolution simulation 
with 64 × 64 horizontal resolution for the online evaluation. To simplify the discussion, we begin by describing 
these categories of parameterizations individually, along with some of the experimental results specific to those 
categories. We then compare performance across parameterization categories in Section 7.1.

Figure 6. Example online similarity scores for two parameterizations 
corresponding to the 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 of their KE flux terms with respect 
to high-res (as compared to low-res). In this example, the first parameterized 
model's KE flux curve is much closer to that of the high-res model than the 
low-res model, so its similarity is positive and close to 1 (though slightly lower 
than it might seem from visual inspection due to the logarithmic x-scale). The 
second parameterized model, on the other hand, is further away than low-res, 
so it receives a negative score.
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Because we have multiple categories of parameterization (FCNN, genetic programming, and baselines) and 
multiple categories of online metric (spectral, distributional, and decorrelation time) with numerous individ-
ual parameterizations (148) and metrics (19) within each category, we will often simplify as follows. For each 
category of online metric, we summarize individual parameterization's scores by taking means (or medians and 
percentiles if visualizing variation). For each category of parameterization, we either show a distribution of these 
mean scores, or select individual parameterizations to highlight from the Pareto frontier of mean scores within 
each category, that is, the set of parameterizations which maximize some linear combination of mean scores.

5. Convolutional Neural Network Parameterizations
We consider parameterizations implemented as fully convolutional neural networks (FCNNs) which output 
predictions for all x, y points simultaneously. Models receive input data at all points x, y in both layers (though 
we train separate models for each fluid layer to reduce memory cost during training), which allows them to be 
maximally flexible, and therefore useful for studying the effects of changing attributes of the data set on best-case 
performance.

5.1. Data Set Design Choices

For our FCNN experiments, we are interested in how the structure of the data set affects the offline and online 
performance. We train FCNNs to predict subgrid forcing diagnosed with each of the five forcing formulations 

𝐴𝐴 (

{
𝑆𝑆𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑆𝑆𝑞𝑞,∇ ⋅ 𝝓𝝓𝑞𝑞, curl(𝑆𝑆𝑢𝑢, 𝑆𝑆𝑣𝑣), curl

(
∇ ⋅𝚽𝚽𝐮𝐮

)}
, Section 3), and for each forcing formulation, we generate three 

FCNNs trained on data sets generated by each filtering and coarse-graining operator (Section 3.4). Finally, we also 
investigate the effect of the choice of input variables we pass to the FCNN by testing every non-empty element of 
the power set of 𝐴𝐴

{
𝑞𝑞𝑞𝐮𝐮𝑞∇𝐮𝐮 =

(
𝜕𝜕𝑥𝑥𝑢𝑢𝑞 𝜕𝜕𝑥𝑥𝑣𝑣𝑞 𝜕𝜕𝑦𝑦𝑢𝑢𝑞 𝜕𝜕𝑦𝑦𝑣𝑣

)}
, which is 7 options in total. This gives us 5 × 3 × 7 = 105 total 

options for constructing FCNN parameterizations.

Notation-wise, we refer to models trained on each option as, for example, 𝐴𝐴 FCNN
(
𝑞𝑞𝑞𝐮𝐮 → 𝑆𝑆

(2)
𝐮𝐮

)
 , which signifies an 

FCNN trained on the values of PV and velocity to estimate subgrid momentum forcing (Equation 10), computed 
with Operator 2 (spectral truncation + Gaussian filter, Section 3.4.2).

For each operator and configuration, we use data from 250 independent high-resolution simulations started from 
random noise and run for 10 simulation years (generally reaching the quasi-steady state by 3–5 simulation years 
depending on the configuration; we also include data from the transient spin-up state in the data set). We sample 
subgrid forcing formulations (i.e., potential prediction targets) and coarsened model state variables (i.e., potential 
input variables) every 1,000 simulation hours, to remove almost all correlation between successive samples. This 
gives us six data sets (2 simulation configurations, jet and eddy, ×3 operators) each with 21,750 snapshots of 
input and target variables (each of which is a 64 × 64 × 2 array).

5.2. Architectural Details and Constraints

Following Guillaumin and Zanna (2021), we train FCNNs with eight fully convolutional layers (128 and 64 filters 
for the first two layers, respectively and 32 thereafter), ReLU activations, batch normalization after all interme-
diate layers, and circular padding due to the periodicity of the domain. Each input variable at each fluid layer 
is passed in a separate input channel. The loss function is mean squared error (MSE), defined as 𝐴𝐴 𝔼𝔼

[(
𝑆𝑆 − �̂�𝑆

)2]
 , 

where 𝐴𝐴 𝔼𝔼 denotes the expected value over a data set and S is a generic prediction target. The FCNNs are trained for 
50 epochs on a MSE loss evaluated over minibatches of 64 samples. In preliminary experiments, we found that 
constraining the FCNNs' final output layers to have zero spatial mean when predicting Sq and Su was necessary for 
online numerical stability (as otherwise, q can continually increase, leading to Courant-Friedrichs-Lewy (CFL) 
condition violations). This is done within the FCNN architecture and not as a post-processing step. The constraint 
ensures that at each timestep, parameterizations redistribute but not increase or decrease the total PV. However, 
when predicting ϕq and Φu, we leave FCNNs unconstrained because we only apply predictions after taking their 
divergence. Although the chosen architecture could be improved, for example, by adopting the U-Net model of 
Ronneberger et al. (2015), our goal is not to maximize the performance but to study its relationship with data set 
design choices.
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5.3. Sensitivity of FCNN Performance to Data Set Design

We now present FCNN-specific results of how online performance varies 
with the data set design choices described in Section 5.1. For each design 
choice, we constructed the corresponding eddy configuration training data, 
trained an FCNN parameterization, and evaluated it in both eddy and jet 
configuration, both offline and online. In each case, all simulations were 
numerically stable (the CFL condition was not violated). The stability is 
likely due to our architectural constraints (as discussed above) and perhaps 
the spectral numerical dissipation scheme of 𝐴𝐴 𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙  . However, performance 
in terms of similarity metrics varied greatly. To visualize this variation, 
Figure  7 shows the kernel density estimates (Rosenblatt,  1956) of condi-
tional probability distributions of the mean 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 similarity score 
(substituting Equation  15 into Equation  19) for different data set design 
choices of filtering and coarse-graining operator, forcing formulation, and 
input variables. Specifically, these plots show the distribution of the aver-
age similarity score across KE power spectra, enstrophy power spectra, and 
energy budget terms over isotropic wavenumber, conditioned on different 
choices of filter and coarse-graining (Figure 7a), targeted forcing formula-
tion (Figure 7b), and input variables (Figure 7c). Probability density closer 
to 1 indicates better performance. Overall, we see higher spectral similar-
ity scores for FCNNs trained on data generated with Operator 1 (spectral 
truncation with sharp filter) (Figure 7a) and predicting momentum forcing 
rather than PV forcing (Figure 7b). The choice of input has a weaker impact 
on these scores (Figure 7c), though simpler terms (𝐴𝐴 𝐮𝐮 , 𝐴𝐴 ∇𝐮𝐮  , or 𝐴𝐴 𝑞𝑞  alone) do 
slightly better, consistent with (Dresdner et  al.,  2022). The same results 
hold for 𝐴𝐴 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 similarity (not shown), which is strongly correlated 
with 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 (Figure 8). In addition, we can gain insights through 

analyzing specific models. If we look at the Pareto frontier of eddy-configuration distributional and spectral 
similarity across all our experiments (Figure 8), we find that the only Pareto-optimal FCNN predicts 𝐴𝐴 𝐴𝐴

(1)
𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡

, which 
is computed with Operator 1 but formulated in terms of PV rather than velocity. If we compare this FCNN to 
others which are identical except for the filtering and coarse-graining operator (Figure D4) or forcing formulation 
(Figure D5), we find again that the choice of operator continues to matter, but that the forcing formulation has 
much less effect as FCNNs predicting other forcing formulations with the same filtering and coarse-graining 

Figure 7. Visualizing the effects of different data set design choices: (a) 
filtering and coarse-graining operator, (b) forcing formulation, (c) input. We 
use the probability distributions of mean spectral similarity scores, conditioned 
on each design choice, and smoothed using kernel density estimation for 
visual clarity. Similarity score probability mass further to the right (past the 
0 line, and toward 1) indicate that the corresponding difference metric was 
low compared to low-res, therefore indicating good online performance. The 
results suggest that marginally, similarity was highest along most metrics for 
parameterizations trained to use velocity (Panel c) to predict velocity-based 
subgrid forcing (Panel b) calculated with a sharp spectral filter (Panel a).

Figure 8. Mean eddy-configuration distributional and spectral similarity scores for many of the 148 parameterizations tested, 
with those defining the Pareto frontier shown with text (the runs with remaining parameterizations, including all Smagorinsky 
runs, have scores to the lower-left of the plot range.).
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operator all have near-identical effects. Combining these individual results 
with the aggregate results of Figure 7, our overall interpretation is that (a) 
the choice of operator is the most important for online performance, and (b) 
predicting velocity forcing (Su or Φu) rather than PV forcing (Sq, 𝐴𝐴 𝐴𝐴𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡  , or 
ϕq) is not necessary for optimal performance, but may be more robust to 
variations in other suboptimal design choices (e.g., picking Operators 2 or 
3). Operator 1 is more faithful to the numerics of the coarse-resolution model 
that we are using in the online evaluation (this is further supported by the lack 
of backscatter generated using ZB2020, see conclusions).

5.4. Relationship Between Offline and Online FCNN Metrics

Offline performance, measured using R 2, is strong for all design choices 
(see Figure 9), though its relationship with online performance depends on 
the filtering and coarse-graining operator. For Operator 1, we see positive 
correlations between offline and online performance (Figures 10a and 10d), 
meaning that higher R 2 parameterizations generally performed better online. 
However, for Operators 2 and 3, we see low or negative correlations, mean-
ing that improved offline performance was associated with worse rather 
than better online performance. This result underscores the importance of 
not focusing too much on improving the offline performance of subgrid 
parameterizations without first demonstrating that such improvements lead 
to improvements in physical realism online.

5.5. Varying the Evaluation Target

Some studies measure the online performance of parameterized low-resolution models with respect to the filtered 
and coarse-grained version of high-resolution data (Beck et al., 2019; Guan et al., 2022; Xie et al., 2020), rather 
than the high-resolution simulation. Calculating similarity scores for coarse-resolution parameterized models 

Figure 9. Offline R 2 scores by data set design choice as in Figure 7, almost all 
of which achieve an R 2 of above 0.8 regardless of condition. The best models 
by offline R 2 are different from those in Figure 7.

Figure 10. Correlation between FCNNs' mean scores in each metric group conditioned on the filtering and coarse graining 
operator (columns) and forcing formulation (rows) used to generate their training data. In most cases, distributional and 
spectral similarity are closely correlated. Correlations with offline R 2 tend to be negative or small, except for FCNNs trained 
to predict PV forcing variants computed with (a) Operator 1.
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relative to a coarsened and filtered high-resolution simulation increases the scores of top-performing FCNNs, 
if the parameterization and the target high-resolution models use the same operator (Figure 11). However, even 
when the target is coarsened with Operator 2 or 3, the actual scores of these models are significantly lower than 
in the case where the FCNN is trained on data generated by Operator 1. The FCNN trained on data generated 
by Operator 1 has the best overall spectral similarity score whether we perform the evaluation using the original 
high-resolution data or data coarsened with Operator 1. This result suggests that Operator 1 is more appropriate 
for computing subgrid forcing in this data set in an absolute sense.

5.6. Feature Importance for FCNNs

To explore the importance of individual features to our FCNN predictions, we look at snapshots of input gradi-
ents, or the partial derivatives of the model's output with respect to its inputs (Baehrens et al., 2010). Note that 
although there are many proposed methods for quantifying neural network input saliency (Bach et  al.,  2015; 
Springenberg et al., 2014), input gradients consistently pass sanity checks that have been developed to validate 
these methods, while many alternatives do not (Adebayo et al., 2018; Kindermans et al., 2019). In Figure 12, 

Figure 11. Boxplots showing distribution of 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 similarity scores (across all FCNNs trained with each filtering 
and coarse-graining operator, e.g., S (1) for Operator 1, with any forcing formulation) when the definition of similarity is 
changed to be relative to a filtered and coarsened version of the high-resolution simulation (bottom three rows), rather than 
the original high resolution simulation (top row). Center line shows medians, colored bars show the interquartile range 
(middle 50% of the data), whiskers show positions of nearest points outside twice the interquartile range, and dots show 
outliers. In general, the relative performance of FCNNs improves when evaluating them against simulations coarsened with 
the same operator used in their training data. However, absolute performance is only high for FCNNs trained on data from 
Operator 1 (spectral truncation + maximally sharp filter).

Figure 12. Input gradients of an FCNN mapping 𝐴𝐴 𝑞𝑞  (a and e) to 𝐴𝐴 𝐴𝐴
(1)
𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡

 (b and f), evaluated at the center of the domain. Gradient magnitudes are largest around the x, 
y-position corresponding to the prediction (c and h) in a given layer. However, they still extend relatively far horizontally, needing 9 pixels to reach >95% of their full 
magnitude (i).
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we show a snapshot of input gradients for the 𝐴𝐴 FCNN
(
𝑞𝑞 → 𝑆𝑆

(1)
𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡

)
 at the center of the domain, which quantifies 

the sensitivity of its predictions at this particular location to its inputs. Although our FCNN architecture allows 
changes in the upper layer 𝐴𝐴 𝑞𝑞  to influence the lower layer prediction and vice-versa, this particular FCNN's input 
gradients are only large in magnitude for 𝐴𝐴 𝑞𝑞  in the same layer as the output, suggesting that it largely operates 
layer-wise. Additionally, gradients were largest in magnitude around the spatial location of the output, suggesting 
that the model operates locally in the horizontal plane. However, we find that a radius of 5 pixels (fourth-order 
operations) is needed to explain 50% of the gradients, and a radius of 9 pixels (eighth-order operations) is needed 
to reach 95% (Figure 12i). This suggests that symbolic parameterizations may need to be fairly non-local and 
high-order to mimic the behavior of FCNNs. We explore this in the next section.

6. Hybrid Linear and Symbolic Regression and Genetic Programming
In addition to opaque models such as neural networks and random forests, it is also possible to learn equations 
from data directly with symbolic regression (Koza, 1994). Symbolic-regression based on running sparse linear 
regression on top of a manually constructed feature library has become popular and achieved impressive results 
in a number of applications (Brunton et al., 2016; Li et al., 2021). Zanna and Bolton (2020) (ZB2020 hereafter) 
learned an expression for the subgrid momentum forcing Su with sparse Bayesian regression (see Equation A7 in 
Appendix). They used data generated from an idealized primitive equation model, with Gaussian filtering (simi-
lar to Operator 2 defined here). Using data from 𝐴𝐴 𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙  and Operator 2 to calculate the same basis features as in 
ZB2020 (i.e., divergence, vorticity, stretching and deformation, their x- and y-derivatives, and all cross-multiples), 
we are able to re-discover Equation A7 with a simple sparse linear regression algorithm. However, sparse linear 
regression entails trade-offs between the size and expressiveness of the feature library and the complexity and 
cost of sparse regression, as discussed in Zanna and Bolton (2020). In the example above, our feature library has 
the initial basis features (4 elements), their first spatial derivatives (8 elements), and all cross-multiples of those 
initial features (144 elements). If we want to expand this library to consider successively higher-order derivatives 
(or more than just linear and quadratic multiples), then the number of different expressions we must evaluate for 
the whole data set will grow exponentially. Additionally, many expressions will be highly correlated, which can 
prevent many sparse regression algorithms from converging (Hastie et al., 2015).

6.1. Hybrid Genetic Programming (GP)

An alternative approach for symbolic regression is genetic programming (GP), a classic approach in AI (Koza, 1994; 
Turing, 1950). In contrast to sparse regression, GP algorithms do not require an explicit feature library, simply 
a set of atomic features and a set of operations for combining them. The GP algorithm then constructs arbi-
trarily deep expressions by successively applying operators to combine atomic and/or composite features in a 
randomized fashion, using evolutionary principles to guide a parallel search for an expression that parsimoni-
ously fits the data. More concretely, GP algorithms begin with a “population” of initially short and randomly 
constructed programs. At each iteration (“generation”), programs are randomly culled, with probability inversely 
related to their relative performance on a “fitness” metric (see Algorithm 1). Programs that survive can then be 
randomly modified (“mutated”) in a variety of ways, which can either lengthen or shorten them. This procedure 
is repeated for a configurable number of generations, after which the GP algorithm returns the best-performing 
program. To implement genetic programming, we used the gplearn Python library (Stephens, 2019). We ran 
into several difficulties with its default implementation, primarily in its difficulty discovering linear combinations 
of terms with different orders of magnitude in the weights (constant ranges must be chosen beforehand, and are 
sampled randomly rather than optimized), as well as the lack of built-in support for spatial differential operators 
in program evolution. We defined custom gplearn functions for differential operators (∂/∂xi, ∇ 2, and 𝐴𝐴 𝐮𝐮 ⋅ ∇ )) 
and combined genetic programming and linear regression in an iterative, residual-fitting procedure described in 
Algorithm 1. Crucially, in each genetic programming step, we define fitness in terms of correlation rather than 
absolute error, making fitting the outermost constants unnecessary. We run genetic programming with 𝐴𝐴 𝑞𝑞  , 𝐴𝐴 𝑢𝑢  , and 

𝐴𝐴 𝑣𝑣  as our base features. Arbitrary powers or cross-multiples of these features can be discovered since the operator 
set includes multiplication. This approach allows us to discover all the same terms which appear in the feature 
library used for ZB2020, but is not limited to them. Based on results obtained from the FCNNs (Section 5.4), 
we chose to run our GP method on PV subgrid forcing, Sq, computed with Operator 1 (Section 3.4.1) to simplify 
learning. Running Algorithm 1 without any manual experimenter intervention leads to a formula of the forcing 
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with an expression for each iteration given in Figure 13. We saw offline performance increase significantly, 
with many of the discovered features seemingly physically relevant, based on previous published parameteri-
zations. In particular, we note that 𝐴𝐴 ∇2

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  and 𝐴𝐴 ∇2𝑣𝑣  in the upper layer, together approximate a parameter-

ization proposed by Porta Mana and Zanna (2014), though missing a Eulerian time derivative of PV which is 
not provided to the algorithm. However, terms discovered after the first two iterations tend to vary significantly 
on random restarts. Terms after the fourth iteration are also significantly harder to interpret (see right end of 
Figure 13). More importantly, we find that some combinations of terms include additions of terms with different 
units (e.g., q and u). Finally, implementations of parameterizations using the hybrid expressions found after the 
sixth iteration were numerically unstable; in addition, although the online performance of runs with the first 4–6 
terms from the symbolic parameterizations did improve over low-resolution models, there were still significant 
differences with respect to many high-resolution diagnostics. To address these issues, we added a human-in-the-
loop guidance step described below.

6.2. Human-In-The-Loop Guidance

Some manual intervention can be introduced during the learning procedure to improve interpretability and stabil-
ity. We added a human-in-the-loop guidance step in each iteration (gray lines in Algorithm 1), where we edited 
or removed terms that seemed unphysical and sometimes added what seemed like natural extensions of existing 
terms. In our final OptionalUserEdits step, we attempted to prune the set of terms as much as possible by remov-
ing those whose removal did not worsen online performance or adding some that may improve it. We provide an 
account of our specific actions in Appendix C.

This procedure left us with a final parameterization of the form:

�GP
� =

(

�1∇2 +�2∇4 +�3∇6
)(

� ⋅ ∇
)

�

+
(

�4∇4 +�5∇6
)

�

+
(

� ⋅ ∇
)2∇2

(

�6�� +�7��
)

.

 (20)

Here wi signify the linear weights. Evaluating this parameterization against FCNNs and traditional physics-based 
models, we find its performance competitive with neural networks in the eddy configuration (Figures 16 and 17) 
and near-dominant in the jet configuration (18 and 19). We discuss its performance further in Section 7.1 where 
we compare and contrast different categories of parameterizations.

Figure 13. Offline correlation and sequence of terms discovered by—Hybrid Symbolic regression without any human-in-the-loop intervention (terms learned for 
upper/lower layers in blue/orange respectively). Terms learned in initial iterations tended to be physically meaningful, relatively simple, and related to parameterizations 
in the literature, while terms learned in later iterations tended to be complex or unphysical (e.g., adding 𝐴𝐴 𝑢𝑢  and 𝐴𝐴 𝑞𝑞  despite incompatible units in iteration 6).
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6.3. Symbolic Regression Feature Importance

As in Section 5.6 for FCNNs, it is useful to quantify the relative importance of the different symbolic terms. One 
way to do this is by examining the weights wi. These are visualized in Figure 14 in two ways: (a) as raw values 
(on a log scale), and (b) normalized after dividing by the standard deviations of the corresponding features (on a 
linear scale), which makes them directly comparable despite each wi having different units. In normalized form 
(Figure 14b), the largest coefficients in both layers are for 𝐴𝐴 ∇4

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞 , and the absolute magnitudes of these coef-

ficients (Figure 14a) are somewhat close. In contrast, the next-largest normalized coefficients in Figure 14b disa-
gree between layers; for the upper layer, the next-largest coefficient is for 𝐴𝐴 ∇6

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞 , while the corresponding 

value in the lower layer is near zero. Instead, the next-largest coefficients in the lower layer are for ∇ 4q and ∇ 6q, 
which receive much more weight relative to their magnitudes in the data set. However, despite the difference in 
relative weight across layers, the absolute magnitudes of the ∇ 4q and ∇ 6q coefficients in Figure 14a are almost 
equal. Overall, these results suggest that the parameterization learns to behave in reasonably similar ways in 
both layers, but with a few crucial differences, particularly in how they handle 𝐴𝐴 ∇6

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  . The final two terms, 

𝐴𝐴
(
𝐮𝐮 ⋅ ∇

)2
∇2𝑣𝑣𝑥𝑥  and 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)2
∇2𝑢𝑢𝑦𝑦  , receive relatively little (normalized) weight in either layer. Another way to esti-

mate feature importance is by removing each term, re-fitting the linear regression coefficients, and re-evaluating 
online performance (Figure  15). If we consider the performance decrease after removal of each feature as a 
measure of its importance, we reach similar conclusions: the ∇ 4 and ∇ 6 terms (for both 𝐴𝐴 𝑞𝑞  and 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  ) are most 

important, the 𝐴𝐴 ∇2
(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  term is somewhat important, and the 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)2
∇2  terms are relatively unimportant.

Algorithm 1. “Hybrid” Linear and Genetic Programming-Based Symbolic Regression (With Optional Human-In-The-
Loop Interventions in Light Gray).

1: procedure FitGeneticProgram(x,y)
2:      Run gplearn with operators {∂x,∂y,∇ 2, (u ⋅ ∇), ∗ ,+}, and

          Fitness(term) = |Corr(term(x), y)| − 0.001 ∗ Length(term)

3: end procedure
4:
5: procedure FitLinearRegression(x, y)
6:   Find w to minimize 𝐴𝐴 ‖𝑤𝑤 ⋅ 𝑥𝑥 − 𝑦𝑦‖2

2

7: end procedure
8:
9: procedure FitHybridSymbolic(x, y)
10:    terms ← ∅  ⊳ set of symbolic expressions
11:   w ← ∅ ⊳ weights of those expressions
12:   𝐴𝐴 𝐴𝐴𝐴← y ⊳ residual forcing to predict
13:
14:   repeat
15:     for all layers z do
16:           terms ← terms ∪ FitGeneticProgram(xz, 𝐴𝐴 𝐴𝐴𝐴𝑧𝑧 ) ⊳ learn the next term
17:     end for
18:     terms ← OptionalUserEdits(terms)
19:     for all layers z do
20:           wz ← FitLinearRegression(terms(xz), yz) ⊳ reweight terms
21:       𝐴𝐴 𝐴𝐴𝐴𝑧𝑧 ←𝑤𝑤𝑧𝑧 ⋅ 𝚝𝚝𝚝𝚝𝚝𝚝𝚝𝚝𝚝𝚝(𝑥𝑥𝑧𝑧) − 𝐴𝐴𝑧𝑧  ⊳ update residuals
22:     end for
23:   until convergence or user decision
24:
25:   return terms, w
26: end procedure
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6.4. Interpretation of the Learned Expression

Note that the goal of the paper is not to focus on interpretability but to introduce methods for learning and 
evaluating parameterizations from data. Therefore, we are not claiming that this parameterization is more phys-
ical than anti-viscosity backscatter (Jansen & Held, 2014) or deformation-based parameterizations (Anstey & 
Zanna, 2017). Nevertheless, we will discuss briefly how the discovered terms compared to other subgrid param-
eterizations and leave further analysis of their contribution to model physics to future studies. The components 
of the proposed model were discovered in the following order. In the first few iterations, quadratic expressions, 
proportional to 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  , were discovered. Quadratic models are often found to be highly correlated with subgrid 

forcing (Anstey & Zanna, 2017; Layton & Rebholz, 2012; Meneveau & Katz, 2000; Porta Mana & Zanna, 2014), 
but often cannot be used as standalone parameterizations. The next few iterations led to eddy-viscosity models, 

𝐴𝐴 ∇4𝑞𝑞  and 𝐴𝐴 ∇6𝑞𝑞  . Particularly, both weights w4 and w5 being positive implies that there is dissipation of energy in 
small scales and redistribution to larger scales, that is, backscattering (Jansen & Held, 2014). The final terms 
discovered are cubic in model variables and contains double-advection operator, 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)2  . The terms resemble 
the anticipated PV method from Vallis and Hua (1988). This method allows to preserve properties inherent to 
geostrophic turbulence such as conservation of energy and dissipation of enstrophy (Marshall & Adcroft, 2010), 
but it suffers from inaccurate representation of spectral fluxes (Thuburn et al., 2014). In summary, our discovered 

Figure 14. Linear regression-derived weights w for the human-in-the-loop genetic programming-derived basis terms 
of Equation 20, both as raw values (a, negative values shown with hatching) and normalized (b) after multiplying by the 
standard deviations of the terms over the training set (giving them consistent units). The absolute magnitudes of many terms 
are somewhat similar across layers, but their effective contributions to the output differ.

Figure 15. Effect of removing individual terms from the symbolic expression of Equation 20 (using human-in-the-loop guidance) on spectral similarity (median scores 
within groups, with error bars showing the 20th and 80th percentiles). From left to right, removing 𝐴𝐴 ∇2

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  reduced performance in eddy configuration, but not jet 

configuration. Removing ∇ 4 and ∇ 6 terms (for both 𝐴𝐴 𝑞𝑞  and 𝐴𝐴
(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  ) drastically reduced performance in both configurations, which suggests these terms are crucial. 

Removing the 𝐴𝐴
(
𝐮𝐮 ⋅ ∇

)2
∇2  terms had small effects, suggesting they could be dropped for future experiments.
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closure contains elements of existing subgrid parameterizations, which have pros and cons when used as stan-
dalone ones. This symbolic parameterization includes up to the seventh spatial derivative of 𝐴𝐴 𝑞𝑞  , which may 
be unrealistic to implement into a climate model. However, it might be more realistic than a fully non-local 
approach such as the convolutional neural network parameterizations considered in Section 5 or extremely local 
physics-based parameterizations (such as anti-viscosity).

Figure 16. Offline performance for selected subgrid parameterizations on a heldout eddy configuration data set computed 
with Operator 1, with means shown in spatial plots. FCNN performance (a–e) is strongest overall, though subgrid power 
spectra diverge slightly at large scales (e). The symbolic regression (f–j) model performs slightly worse, but matches the 
power spectrum at all scales reasonably well. The backscatter model (k–o) perform much worse offline (though all three 
perform well online, Figure 17).

Figure 17. Sample of online performance diagnostics for symbolic regression and best FCNN/backscatter parameterizations by eddy-config 𝐴𝐴 𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜𝚜_𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍 (taken 
from the Pareto frontier of top models by spectral and distributional similarity, and averaged across five independent runs). Shading in KE time-series shows standard 
deviation over runs. All parameterizations improve significantly over the low-resolution model.
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7. Discussion and Conclusion
We will finally compare our top parameterizations and then summarize our key findings in this section.

7.1. Comparing Top Parameterizations

To conclude our analysis, we focus on the top-performing models of different categories. The Pareto frontier 
of distributional and spectral similarity (Figure 8) conveniently includes one FCNN, our symbolic parameteri-
zation, and two backscatter parameterizations (we select the one with higher spectral similarity). Note that the 
Smagorinsky parameterizations have very poor performance online (not surprisingly since they are dissipative) 
and we strongly encourage the community to choose better physics baselines when evaluating the performance of 
data-driven parameterizations. Offline on eddy configuration (Figure 16), FCNN performance (Figures 16a–16e) 
is strongest overall, though power spectra diverge slightly at large scales (Figure 16e). The symbolic regres-
sion model (Figures 16f–16j) performs slightly worse offline than the FCNN, but matches the power spectrum 
at all scales reasonably well. The backscatter model (Figures 16k–16o) performs much worse offline than the 
data-driven models, using R 2 as a metric. However, all three selected models perform well online (Figure 17), 
with the FCNNs showing better distributional performance than the other models (Figure 17c). However, the 
FCNN models seem to spin up the large scale faster than the other models (Figure 17b). On jet configuration, 
the offline performance remains similar for all models, except for the R 2 of the FCNN in the lower layer which is 
significantly lower than for the eddy configuration (Figure 18b). However, online FCNN's performance degrades 
to significantly worse than the low-resolution without parameterization (Figures 19 and 20). In addition, the 
backscatter model does not have a significant impact on the low-resolution simulation, though this depends on 
which metric we consider (e.g., Figure 19). On the other hand, the symbolic model remains fairly robust - with-
out retraining or tuning in this new configuration. FCNNs with different forcing formulations degraded slightly 
less when transferring to jet configuration (Figure D6). However, their average similarity scores were still low 
compared to the hybrid symbolic model (Figure D9), and they disrupted the characteristic jet features, causing 
the flow to more closely resemble the eddy configuration on which they were trained (Figure D3). Even in the 
eddy configuration, 𝐴𝐴 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚝𝚝𝚝𝚝𝚝𝚝𝚍𝚍s for the best-performing models are only modestly closer to those from the 
high-resolution compared to those of the low-resolution simulation. In the case of the FCNN, the decorrelation 
times are actually worse (Figure 21) than the low resolution. Using the decorrelation metric, Smagorinsky param-
eterizations actually performed best (slightly ahead of certain backscatter settings), even though they performed 
near the worst by all other metrics (see also Figure D8). As expected, the data-driven parameterizations are doing 
well at representing the averaged statistics at coarse resolution (i.e., the climate) but do not improve the short-term 
trajectories (i.e., the “weather”).

Figure 18. Offline performance as in Figure 18, but testing for generalization to jet configuration. For FCNNs (a–e), R 2 
is lower in the upper layer and actually negative in the lower layer. However, correlation remains fairly high, suggesting 
that performance might improve with rescaling. For our symbolic regression model (f–j) and backscatter (k–o), offline 
performance remains similar to eddy configuration, though only the hybrid symbolic model generalizes online (Figure 19).
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7.2. Conclusion

We introduced a framework and a set of data sets for learning and evaluating ocean subgrid forcing parameteri-
zations in a quasi-geostrophic setup, with a focus on a set of well-defined quantitative offline and online metrics. 
We used this framework to train and test physics-based and data-driven parameterizations under a variety of 
conditions, namely the different training datasets and definitions of subgrid forcing. Several conclusions stand 
out as particularly relevant for developing subgrid parameterizations from high-resolution simulations for climate 
models, even though some of the parameterizations developed here cannot easily be implemented in climate 
models. We summarize our key points as follows

Figure 19. Similar to Figure 17, but evaluated on jet rather than eddy configuration (without retuning). The hybrid symbolic parameterization still improves 
significantly over low-resolution model, while backscatter has no discernible effect and FCNNs degrade significantly.

Figure 20. Randomly chosen snapshots of kinetic energy density for selected parameterizations on eddy (a–e) and jet 
configuration (f–j). On jet configuration, the symbolic parameterization (j) matches high-resolution (f) reasonably well, while 
the FCNN (i) deviates significantly and backscatter (h) does not appear to have any effect or modify the low-resolution (g). 
See Figures D1 and D2 for more.

 19422466, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003258, W
iley O

nline L
ibrary on [04/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

ROSS ET AL.

10.1029/2022MS003258

25 of 36

•  Metrics: performance offline and online needs to be rigorously evaluated, rather than eyeballing improvement 
over a few selected diagnostics, to determine the accuracy and reliability of a given parameterization or simu-
lation. Here, we designed multiple level of metrics: offline metrics that captures the statistics of the subgrid 
forcing; online metrics that captures the physics of parameterized simulation (e.g., kinetic energy flux) or the 
climatological and short-term performance of the model (e.g., climatological PDF of potential vorticity, or 
decorrelation timescales of short term forecasts, respectively). Our open-source framework (Appendix D) will 
hopefully encourage the research community to find easy-to-use resources for such evaluation and facilitate 
the development of new parameterizations that more faithfully capture the effects of subgrid-scale processes.

•  Data design choice: the filtering and coarse-graining operator is key, consistent with Zanna and Bolton (2021) 
and Frezat et al.  (2022). The online results for a given FCNN architecture are highly sensitive to filtering 
choice; here the best performance was obtained with a filtering that most closely follow the numerics of the 
model. Therefore, we encourage testing multiple operators for data preparation guided by the target applica-
tion rather than varying hyperparameters or neural network architectures.

•  Stability: Our architecturally constrained FCNNs remained numerically stable in any configuration (as shown 
in Guillaumin and Zanna (2021) for different model configurations), which is likely further aided by the spec-
tral truncation of high-frequency modes in pyqg.

•  Generalization: symbolic expressions, found using a new algorithm that we developed, were more interpreta-
ble with fewer parameters and generalized better to new domains than neural networks, which are infamously 
sensitive to even minor distributional shifts (Recht et al., 2018).

There are many possible directions we did not explore for NN optimization, including online learning (Dresdner 
et al., 2022; Frezat et al., 2022; Kochkov et al., 2021; Sirignano et al., 2020; Um et al., 2020), or training on 
multiple datasets (Bolton & Zanna, 2019; O’Gorman & Dwyer, 2018). New approaches to remain more faithful 
to the physics of the problem that could be explored as well which include non-dimensionalizing input variables 
(Beucler et  al.,  2021), modeling subgrid-scale organization (Shamekh et  al.,  2022), or finding a better latent 
space for our input (and eliminating spurious correlation with causal inference). There are also opportunities 
for improving our symbolic regression procedure, including more intelligently interweaving continuous opti-
mization with genetic programming (Cranmer, 2020), initializing symbolic regression with terms from existing 
physical parameterizations, or directly learning residuals on top of them. For both neural networks and symbolic 
regression, finding better metrics for offline learning or testing might help ensure more robust results for online 
implementation in existing legacy climate models.

Appendix A: Baseline Local Physical Parameterizations
A1. Smagorinsky

A common baseline for physical parameterizations was proposed by Smagorinsky (1963) as scale-selective dissi-
pation. Given the strain-rate tensor, T,

Figure 21. 𝐴𝐴 𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍𝚍_𝚝𝚝𝚝𝚝𝚝𝚝𝚍𝚍 results for selected parameterizations on (a) eddy and (b) jet configuration. For each 
parameterization type, vertical lines show average time for five pairs of high- and low-resolution simulations to reach 0.5 
correlation after starting at different randomly sampled initial conditions q0. FCNNs diverged from high resolution models 
faster than unparameterized models, while backscatter and hybrid symbolic parameterizations stayed correlated for similar 
durations. Smagorinsky parameterizations stayed correlated significantly longer.
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the Smagorinsky parameterization predicts the subgrid forcing of u and v, denoted as Ssmag, such that
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⎛
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⎜
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where the short-hands 𝐴𝐴 ()𝑥𝑥𝑥𝑥𝑥 ≡
𝜕𝜕

𝜕𝜕𝑥𝑥𝑥𝑥𝑥
 are used for low-resolution spatial derivatives,

𝜈𝜈smag = (𝐶𝐶𝑆𝑆Δ𝑥𝑥)
2

√
𝑇𝑇 2

11
+ 𝑇𝑇 2

12
+ 𝑇𝑇 2

21
+ 𝑇𝑇 2

22
, (A3)

and CS is a tunable parameter. Here we will use CS ∈ {0.075, 0.15, 0.3}. Smagorinsky is a parameterization of 
small-scale dissipation, which can correct the tendency of low-resolution models to concentrate too much energy 
at small scales. However, the parameterization does not redistribute this energy back up to larger scales via 
backscatter, as show in theoretical analysis and simulations of quasi-2D turbulence (Kraichnan, 1976; Natale & 
Cotter, 2017; Thuburn et al., 2014).

A2. Backscatter and Biharmonic Dissipation

Different parameterizations that can potentially address backscatter include the parameterization suggested by 
Jansen and Held (2014) and Jansen et al. (2015), which consists of scale-selective dissipative operator and an 
additional negative viscosity part reinjecting energy at larger scales. The magnitude of the negative viscosity 
part is chosen such that resulting model approximately conserves energy. We adapt this parameterizations for 
use in pyqg. The small-scale dissipation of enstrophy is parameterized with biharmonic Smagorinsky model (see 
Equation A3)

𝐹𝐹smag = −∇2
[
𝜈𝜈smag∇

4𝜓𝜓
]
. (A4)

The negative viscosity backscatter is parameterized with less scale-selective Laplacian viscosity operator:

𝐹𝐹bscat = −𝜈𝜈bscat∇
4𝜓𝜓𝜓 (A5)

and total contribution to PV equation is given as Sbscat = Fsmag + Fbscat. The negative viscosity backscatter re-injects 
the CB fraction of the total energy dissipated by the biharmonic model. As such, the negative viscosity coefficient 
is given by:

𝜈𝜈bscat = 𝐶𝐶𝐵𝐵

∑2

𝑖𝑖=1
𝐻𝐻𝑖𝑖 ∬ 𝜓𝜓𝑖𝑖𝐹𝐹smag,𝑖𝑖𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦∑2

𝑖𝑖=1
𝐻𝐻𝑖𝑖 ∬ 𝜓𝜓𝑖𝑖 ∇

4𝜓𝜓𝑖𝑖𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
 (A6)

where Fsmag,i is the value of Equation A4 at a particular layer. We run this parameterization at 36 parameter settings 
corresponding to every combination of CB ∈ {.7, 0.8, 0.9, 1.0, 1.1, 1.2} and 𝐴𝐴 𝐴𝐴2

𝑆𝑆
∈ {.003, .005, .007, .01, .02, .04} 

(the use of 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 is for convenience).

A3. Zanna Bolton Data-Driven Equation-Discovery Parameterization

Using data from an idealized primitive equation model and relevance vector machine, Zanna and Bolton (2020) 
learned an expression for the subgrid momentum forcing. They use both barotropic and baroclinic simulated data, 
and apply Gaussian filtering with coarse-graining to diagnose the subgrid forcing. The form of the parameteri-
zation is given by

�̂�𝐒
ZB2020
𝐮𝐮 ≈ 𝜅𝜅ZB2020∇ ⋅

⎛
⎜⎜⎝

−𝜁𝜁𝜁𝜁 𝜁𝜁�̃�𝜁

𝜁𝜁�̃�𝜁 𝜁𝜁𝜁𝜁

⎞
⎟⎟⎠
+ 𝐈𝐈

1

2
𝜅𝜅ZB2020∇

(
𝜁𝜁 2 +𝜁𝜁2 + �̃�𝜁2

)
, (A7)
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for each vertical layer, with

𝜁𝜁 = 𝑣𝑣𝑥𝑥 − 𝑢𝑢𝑦𝑦, 𝜎𝜎 = 𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦, (A8a)

𝐷𝐷 = 𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑥𝑥, �̃�𝐷 = 𝑢𝑢𝑥𝑥 − 𝑣𝑣𝑦𝑦, (A8b)

where ζ is the relative vorticity, σ is the divergence, and D and 𝐴𝐴 �̃�𝐷  are the shearing and stretching deformation 
of the low-resolution flow field, respectively. For online tests, rather than using the value of κ ZB2020 diagnosed 
in Zanna and Bolton (2020), we fit the parameter empirically to achieve maximal offline R 2 on the training set 
(equivalent to that generated using Operator 2). For online simulations, we also test at κ ZB2020 = 2 and 1/2 times 
the empirically fit value.

Appendix B: Decomposition of Subgrid Forcing
We can further decompose subgrid contribution into the contribution toward kinetic energy and the contribution 
toward potential energy. Let Sψ be the tendency in the streamfunction induced by subgrid forcing, we use Equa-
tion 3 to rewrite Equation 12 as

(
𝜕𝜕𝜕𝜕(𝑘𝑘𝑘 𝑘𝑘)

𝜕𝜕𝜕𝜕

)sub

= −
1

𝐻𝐻

2∑
𝑚𝑚=1

𝐻𝐻𝑚𝑚ℝ

[
�̂�𝜓∗

𝑚𝑚

[(
−𝜅𝜅2

𝐈𝐈 +𝐌𝐌
)
�̂�𝐒𝜓𝜓

]]

=
1

𝐻𝐻
𝜅𝜅2

2∑
𝑚𝑚=1

𝐻𝐻𝑚𝑚ℝ

[
�̂�𝜓∗

𝑚𝑚

(
𝐀𝐀𝜅𝜅 �̂�𝐒𝑞𝑞

)
𝑚𝑚

]
−

1

𝐻𝐻
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𝐻𝐻𝑚𝑚ℝ
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𝑘

 (B1)

where 𝐴𝐴 𝐀𝐀𝜅𝜅 =
(
−𝜅𝜅2

𝐈𝐈 +𝐌𝐌
)−1 . On the right-hand side of Equation B1, the first term matches the definition of the 

contribution toward kinetic energy, and we regard the second term as the contribution toward potential energy. 
This decomposition is used in calculating the spectral similarity scores.

Appendix C: Human-In-The-Loop Symbolic Regression Steps
In this section, we describe the specific “OptionalUserEdits” steps we took in applying Algorithm 1 to obtain 
Equation 20. In the first gplearn step, we discovered 𝐴𝐴 ∇2

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  (in the upper layer) and 𝐴𝐴 ∇4

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  (in the 

lower layer), which gave us training set correlations of 0.80 (upper) and 0.77 (lower) after fitting models with 
both terms to each layer. To this, we added 𝐴𝐴 ∇6

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  to extend the pattern, which brought the same correla-

tions to 0.84 and 0.82. We then ran the next gplearn step, which outputted 𝐴𝐴 ∇4𝑞𝑞  (upper) and 𝐴𝐴 ∇6𝑞𝑞  (lower). This 
brought correlations up to 0.845 (upper) and 0.836 (lower). We kept both these terms, and experimented with 
adding 𝐴𝐴 ∇8𝑞𝑞  , but correlations actually decreased in the lower layer. We then ran the next gplearn step, which 
returned 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)2
∇2𝜕𝜕𝑥𝑥𝑣𝑣  and 𝐴𝐴 𝐴𝐴𝑥𝑥∇

8𝑞𝑞  . This nudged correlations to 0.846 (upper) and 0.838 (lower), which nudged 
very slightly higher to 0.846 and 0.840 when further adding the counterparts of these terms obtained by switch-
ing x and y, 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)2
∇2𝜕𝜕𝑦𝑦𝑢𝑢  and 𝐴𝐴 𝐴𝐴𝑦𝑦∇

8𝑞𝑞  . From this set of terms (which includes all terms in Equation 20 with the 
addition of two ninth-order 𝐴𝐴 𝐴𝐴𝑖𝑖∇

8𝑞𝑞  terms), we began a final OptionalUserEdits step using online performance as 
a guide (removing each term individually, but pairing up the removals of the terms with natural x and y counter-
parts). In this step, we found that the 𝐴𝐴 𝐴𝐴𝑖𝑖∇

8𝑞𝑞  terms were actually hampering online performance (i.e., performance 
rose without them), while the others all appeared to help (i.e., performance fell without them)—though our results 
in Figure 15 later showed that the slight improvement we saw from the 𝐴𝐴

(
𝐮𝐮 ⋅ ∇

)2
∇2𝜕𝜕𝑖𝑖𝐮𝐮𝑖𝑖  terms was not significant. 

We then accepted the expression of Equation 20 as our final output, saving its weights (learned with respect to 
eddy-config 𝐴𝐴 𝐴𝐴

(1)
𝑞𝑞  ). Note that because the genetic programming steps are stochastic, re-running this procedure 

with a different random seed might produce different results. For example, in Figure 13, we discovered a 𝐴𝐴 ∇2𝑣𝑣  
term in the second step, but in this case such a term was never learned (though this could be alternately explained 
by the manual addition of 𝐴𝐴 ∇6

(
𝐮𝐮 ⋅ ∇

)
𝑞𝑞  , which may have accounted for its contribution).

Appendix D: Supplementary Figures
This section includes additional result figures (Figures D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, and D12; 
Tables D1 and D2).
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Figure D1. Like Figure 20, but showing additional randomly chosen snapshots.

Figure D2. Like Figure 20, but showing upper PV q1 rather than KE density.

Figure D3. Like Figure 20, but additionally showing KE snapshots for FCNNs trained on eddy configuration data with 
different forcing formulations (see Figures D5 and D6). All FCNNs produce reasonable results on eddy configuration (d–f), 
but on jet configuration (j–l), the snapshots do not resemble high-resolution (g), with either latitude-specific increases in 
energy (j) or disruption of jets in favor of isotropic eddies (k–l), resembling FCNN training conditions.
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Figure D5. Like Figure 17, but comparing the online eddy configuration performance of FCNNs trained to predict different subgrid forcing formulations (𝐴𝐴 𝐴𝐴𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡
 , Su, 

and ϕq) computed with Operator 1 (Equation 13). All perform almost equally well, suggesting that the forcing formulation may matter much less than the filtering and 
coarse-graining operator (Figure D4).

Figure D4. Like Figure 17, but comparing FCNNs trained to predict 𝐴𝐴 𝐴𝐴𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡
 computed with each filtering and coarse-graining operator. Only the model trained with 

Operator 1 (Section 3.4.1) performs near-optimally, though the model trained with Operator 3 (Section 3.4.3) does well except for deviations in spectral metrics at large 
scales (a, f, and g). These results suggest the filtering and coarse-graining operator is important for parameterization performance.
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Figure D7. Offline results for more forcing formulations (𝐴𝐴 𝐴𝐴
(1)
𝐮𝐮  and 𝐴𝐴 𝐴𝐴

(1)
𝑞𝑞  results show averages over u and v terms). Many 

performance metrics are generally higher for models trained to predict subgrid fluxes (k–n), but this difference disappears if 
we compute them with respect to the implied subgrid forcing (i.e., by taking the divergence of the predicted quantities and 
comparing that to the true subgrid forcing, rather than comparing predicted to true subgrid fluxes).

Figure D6. Like Figure 19, but comparing the online jet configuration performance of FCNNs trained to predict different subgrid forcing formulations (𝐴𝐴 𝐴𝐴𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡
 , Su, and 

ϕq) computed with Operator 1 (Equation 13). In this case, the models trained to predict 𝐴𝐴 𝐴𝐴
(1)
𝐮𝐮  and 𝐴𝐴 𝐴𝐴

(1)
𝑞𝑞  appear to generalize better. However, their average scores across 

the full set of metrics (e.g., Figure D9) remain low, and in KE snapshots from these FCNNs (Figure D3), the characteristic jet behavior we see in high-resolution is 
absent.
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Figure D9. Like Figure 8, but evaluated on jet configuration. In this regime, the only models which appear on the Pareto 
frontier (highlighted in text) are the hybrid symbolic model and one parameter setting of the backscatter parameterization, 
which differs significantly from the eddy-configuration Pareto-optimal settings shown in Figures 8 and D8.

Figure D8. Like Figure 8, but comparing distributional similarity from Section 4.2.2 (a) and spectral similarity from 
Section 4.2.1 (b) with decorrelation time similarity from Section 4.2.3. Smagorinsky and backscatter parameterizations 
(which form most of the Pareto frontier in both plots) increase decorrelation time, though only by about 8% of the gap 
between low- and high-resolution decorrelation times (which is what the y-axis signifies). Neural networks almost universally 
reduce it, while the hybrid symbolic parameterization modestly increases it.
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Figure D10. Mean similarity scores for unseen high-resolution (L/Δx = 256), low-resolution (L/Δx = 64), and 
intermediate-resolution (L/Δx = 128) simulations with respect to the actual high- and low-resolution datasets used to 
evaluate parameterizations. Error-bars show means and standard deviations over 10 random samples of five simulations 
from a set of 25 unseen simulations. Spectral and decorrelation time similarity scores between different randomly re-run 
high-res simulations are >0.95 on average (and ≤0.01 on average for unseen low-resolution simulations), indicating they 
are fairly reliable (they should be near 1 for high-res and near 0 for low-res). End-of-simulation distributional similarity 
scores are a bit noisier, averaging 0.83 for unseen high-resolution simulations (so such scores in our results of above ≈0.8 
are potentially near-optimal). Although distributional similarity scores are still precise enough to provide meaningful insight 
into parameterization performance, future experiments could improve their precision by increasing the size of ensembles, or 
by comparing distributions marginalized over more than just the final timestep. Finally, L/Δx = 128 simulations score highly 
(closer to L/Δx = 256) on distributional and spectral similarity, indicating convergence on long-term “climate” predictions. 
However, they score much worse (closer to L/Δx = 64) on decorrelation time similarity, suggesting that short-term “weather” 
predictions are more sensitive to changes in resolution.

Figure D11. Comparison of the energy density removed via numerical dissipation at each scale for different 
parameterizations and resolutions (on eddy configuration, with spectra averaged over five simulations). Although the 
definition of the dissipative term is identical at each resolution, the actual amount of energy dissipated varies in practice due 
to how parameterizations change the distribution of quantities across scales. In this case, parameterized models lose less 
energy to numerical dissipation than unparameterized models at the same resolution, likely because the purpose of those 
parameterizations is to transport energy to larger scales.
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Simulation Type Train Time Runtime

Neural Network (CPU) — 2 hr 53 min

Neural Network (GPU) 52 min 13 min 4 s

High-res N/A 5 min 57 s

Hybrid Symbolic 35 min 2 min 22 s

Backscatter + Biharmonic N/A 59 s

Low-res N/A 22 s

Note. The FCNN slows down the low-res simulations (Zanna & Bolton, 2020), even when utilizing a GPU. The low-res 
simulations with FCNN are twice as slow as the high-res; the slow down is primarily due to the depth of the neural network. 
The symbolic regression-parameterized simulations are more than twice as fast as the high-res simulations. Lower-order 
backscatter parameterizations are >2x as fast again (though still 𝐴𝐴 𝐴

1

2
 x the speed of unparameterized low-res simulations). 

This is consistent with Zanna and Bolton (2020).

Table D1 
Wall Clock Times to Train Parameterizations (Center) and Run Simulations (Right) for Different Simulation Types; That Is, 
for Single Runs on a Tesla V100 for GPUs and an M1 MacBook Pro for CPUs

Model

Eddy configuration Jet configuration

Rank by ∑ Rank by ∏ Rank by ∑ Rank by ∏

FCNN𝐴𝐴
(
𝑞𝑞 → 𝑆𝑆

(1)
𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡

) 1 — 129 —

BSCAT(0.02,1.0) 28 1 31 —

Hybrid Symbolic 4 11 1 —

BSCAT(0.005,0.8) 74 23 2 1

Note. Off-diagonal elements show each model's ranking by score reductions where it is not optimal, and “—” indicates that a 
negative similarity score was found (so the geometric mean is not meaningful). The hybrid symbolic model ranks highly by 
all score reductions except its jet configuration geometric mean (where its decorrelation time similarity is slightly negative).

Table D2 
“Leaderboard” of Models With the Highest Arithmetic Means (∑) and Geometric Means (∏) Over Our Three Score 
Categories (Average Distributional, Spectral, and Decorrelation Time Similarity; That Is, the Axes of the Pareto Frontier 
Plots in Figure 8, D8, and D9) in Both Eddy and Jet Configuration

Figure D12. Probability density functions (PDFs), calculated using kernel density estimates (KDE), in both real (top) and logarithmic (bottom) space of upper 
and lower PV and KE for selected parameterizations (as compared to unparameterized baselines, and computed via kernel density estimation). The selected 
parameterizations cause these quantities to match the high-resolution simulation much more closely, even in the tails of the distribution (e.g., far right sides of log PDF 
plots).
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Data Availability Statement
Version 1.0.2 of the Python repository used for training and evaluating parameterizations is preserved at https://
doi.org/10.5281/zenodo.7222704, available via the MIT license and developed openly at https://github.com/
m2lines/pyqg_parameterization_benchmarks (Ross et al., 2022). The baseline high- and low-resolution datasets 
used for evaluating parameterizations, as well as the subgrid forcing data sets used for training them, are available 
at Zenodo via https://doi.org/10.5281/zenodo.6609034 under a Creative Commons Attribution 4.0 International 
license (Ross, 2022).
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