
Refactoring Machine Learning

Andrew Slavin Ross
Paulson School of Engineering and Applied Sciences

Harvard University
andrew_ross@g.harvard.edu

Jessica Zosa Forde
Project Jupyter

jzf2101@columbia.edu

Abstract

Results in machine learning scholarship are sometimes based on untested, difficult-
to-read code that has only been seen by a single researcher. We argue that this
is bad, and that machine learning scholarship could be improved by adhering
to software development best practices. We identify several practices which are
not widely followed within the research community but we believe would help
improve the reliability of results. We describe how to apply these best practices in
a machine learning research setting. Finally, we suggest several modifications to
the publication review process to encourage adherence.

1 Introduction: A Tale of Two Rigors

Researching machine learning often requires skill in both mathematics and software development.
These two fields, however, have very different ideas about what constitutes rigor or clarity.

As new ML researchers have flooded into the field [38], some have lamented a slackening of
mathematical rigor [34, 22]. Even techniques that work well empirically have sometimes turned out
to be based on faulty proofs [19] or imprecise explanations [18]. A major focus of criticism, perhaps
more from a general scientific perspective than a mathematical one, has been on reproducibility [17].

One emerging school of thought in how to address some of these challenges is that we need to bring
back the mathematical “rigor police” [34]. We need to clearly separate which of our conclusions are
empirical and which are theoretically backed [22]; and the ones that are theoretically backed need to
be based on more solid analysis. One embodiment of this zeitgeist may be seen in the shifting of the
subfield of adversarial robustness towards provable, certified defenses [33].

Another common refrain is that we need to adhere to a stricter notion of scientific rigor in our
empirical studies [36]. If our methods are stochastic, we need to always rerun them with multiple
random seeds [17]; if our baselines have hyperparameters, we need to tune them just as aggressively
as those of our main contribution [28]; and if we introduce techniques with multiple components, we
must always run thorough ablation studies [40]. Furthermore, we need to publish the full code and
data pipelines behind our papers [12, 3] and even systematically recruit independent researchers to
reproduce our results [2].

While these steps are all laudable, most of them tend to be couched in a mathematical or scientific
notion of rigor. Even more engineering-minded critiques tend to be focused on technical debt in
real-world applications [35] rather than “research debt” incurred in academic settings [32].

The argument in this paper is that there are a wealth of techniques and best practices from the world
of professional software development that have been insufficiently embraced or even understood by
the machine learning community. These practices are generally focused on enhancing code clarity
and comprehensibility while reducing the incidence of bugs.

The issue of bugs in machine learning research code is also an important one, which has gone largely
unaddressed by the critiques cited above. Researchers may encounter bugs during the course of

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



implementing research code that make certain techniques seem more effective than they actually are
[23]. Many of these problems are fixed before publication, but it is possible that some errors may
remain [25, 24, 6], especially if researchers are engaged in active experimentation in the final hours
before a deadline. In professional and open source software development, projects of sufficient size
are rarely entirely bug-free [41, 11, 9]. However, bugs in software ultimately need to be fixed; the
existence of real people continually using a software application exerts an external pressure to identify
and resolve issues. Research pipelines, generally run a limited number of times before publication,
face no such pressure. Although we do not want to increase the workload of overburdened machine
learning researchers, we do feel that in the publication review process, there should be some way to
reward researchers for basing their conclusions on code that is clear and validated by many tests and
sets of eyes—as opposed to code which is opaque, untested, and only seen by a single person.

For the rest of this paper, we will describe practices commonly used for quality assurance in real-
world software development. We will make suggestions for how they might be applied to machine
learning research. Finally, we will propose an alteration to the review process for machine learning
conferences that will reward research based on code that is not just reproducible, but clear and
well-tested.

2 Software Best Practices + ML

2.1 Test-Driven Development

Test-driven development [7, 39] is a method of developing software in which application code is
developed in conjunction with (or even after) automated tests for how that code should behave. For
any function or class, one generally writes simple “sanity-check” tests as well as more complex
tests that span a space of “edge cases” describing how the function should behave under different
conditions. Automated tests of a single function or class are called unit tests; longer, more involved
tests which span multiple modules are usually referred to as integration or acceptance tests. Writing
tests provides an extra layer of certainty that code is correct, helps prevent bugs before they happen
by forcing developers to consider failure modes, and encourages modularity in software design (since
modular components are easier to test).

Testing does not appear to be a common practice in machine learning research labs. One seemingly-
persuasive objection is that many machine learning techniques involve stochasticity, which can
be difficult to deterministically test. However, this is not an insurmountable barrier. First of all,
stochasticity is rarely present in all parts of a method. Novel penalty terms with deterministic inputs
and outputs can and should always be tested. The same goes for preprocessing transformations.
Finally, irreducible stochasticity can be dealt with in a manner similar to the reparameterization
trick [20]; functions with stochastic outputs can be rewritten deterministically to accept random
variables as additional inputs, which can enable exact testing. For an excellent tutorial on how to test
Markov-Chain Monte Carlo code (inspired by a minor bug that resulted in the authors’ retraction of
their paper [23, 25]), see [16].

2.2 Code Review

Code review is another important software development practice that often goes hand-in-hand with
automated testing. Many companies have strict rules that code changes cannot be released until
several developers besides the author(s) have closely read and reviewed them. Often such changes
go through multiple rounds of revisions and refactoring before the process completes. While there
is some disagreement about the frequency with which bugs are actually caught during code review
[10], there is evidence to support the claim that code which is heavily reviewed tends to contain
fewer bugs [27]. This may be because the knowledge that others will be reviewing code encourages
developers to ensure that it is well-tested and clearly written beforehand, which prevents bugs from
being introduced in the first place.

To our knowledge, there have not been any studies examining the practice and frequency of code
review in machine learning groups. Anecdotally, code review does not appear to be standard practice
in the field, though this may differ slightly in large engineering organizations. Either way, the
possibility that many widely-cited research results are based on code that has never been tested or
even seen by anyone other than the first author should be of concern to the research community.

2



2.3 Object-Oriented Design, Meaningful Names, and Refactoring

Testing and peer review are important, but apart from the minor tweaks that testing stochastic code
encourages, they do not encode any strong opinions on the structure and organization of research
code—or how we think about research more generally. However, in this section, we would like to
make a slightly broader set of arguments about how we organize both code and concepts in machine
learning research.

Many experts in software design [30] and human-centered design more generally [31] have pointed
out the dangers of using the wrong abstractions.1 The difficulty and importance of choosing good
names can be summarized by the popular adage that “there are only two hard things in Computer
Science: cache invalidation and naming things” [14].

One example of this issue in machine learning is pointed out by [22], who argue that the field is guilty
of using misleading colloquialisms to describe techniques. However, while choosing misleading
names is definitely counterproductive, negative issues can also result from choosing meaningless
names, as software developers have long argued [37]. Although rigorous adherence to formal
mathematics and statistics is often seen as a corrective to machine learning’s failings, those fields
have their own troubling tendencies to name concepts after people or even Greek letters [1, 8].

We have two categories of suggested changes. The first are stylistic and the second are structural.

Stylistically, we would like to suggest that machine learning move towards meaningful, intention-
revealing names for techniques and variables, in both code and proofs. We suggest discouraging
the use of Greek letters, single Roman letters, or researchers’ last names except when absolutely
necessary. For example, we might prefer params over theta in code, or even in a proof. In both
cases, one could consider rewriting complicated expressions using the “extract variable” pattern [13],
where intermediate quantities are given short but meaningful names. Using intention-revealing names
instead of Greek letters in derivations may seem anathema to mathematicians, but we believe that the
goal of typesetting should be clarity, not concision.

Structurally, we believe it would be helpful to organize both machine learning code and concepts
in a more object-oriented fashion. In particular, we recommend studying the object-oriented best
practices, such as SOLID [5, 26]. Specific examples of how this could affect machine learning
include treating models, datasets, and predictions as classes, and using compositions of objects with
dependency injection to avoid “god functions” [4] and “parameter hell” [21].2 Thinking in terms of
inheritance patterns may also be helpful for organizing and describing different abstract machine
learning methods as well. Many techniques can be defined in a modular fashion, or considered as
different special cases of the same abstract formulation. Object-oriented design provides an intuitive
framework for representing these kinds of relationships.

Overall, what we would love to see is a motion towards refactoring [15], both within specific research
projects’ codebases and across the field. Knowledge—not just code—can and should be frequently
renamed and reorganized. In doing so, we echo the calls of platforms such as distill.pub, whose
stated mission is to help pay down the “research debt” machine learning has incurred in its rapid
expansion [32]. We believe that software design has many helpful tools to offer in this effort.

3 Incentivizing Meaningful Change

In the previous section, we argued that software development best practices offer many tools for
improving the quality of machine learning research. However, from the authors’ personal experience,
familiarity with these best practices is not always sufficient to guarantee adherence. Instead, we
suspect that it could be more effective to provide incentives. To that end, we propose the following
set of changes to the machine learning conference review process:

• Create a platform for anonymized code submission to conferences.

• Require that computational papers provide reference code with their initial submission
replicating at least toy experiments.

1For a strange but excellent recorded talk about this problem, see [5].
2[29] recommends limiting methods to just four parameters, including keyword arguments.

3

https://distill.pub


• Require that reference code contain a suite of automated tests and sanity checks suitable for
external review.

• Encourage reviewers to audit code for both correctness and clarity and factor it into their
acceptance decision.

While these requirements may seem stringent, we think they could have many positive effects. In
particular, we hypothesize that:

• Requiring submission of well-structured code alongside a paper strongly will discourage
last-minute experimentation and tweaking, which is a potential source of error.

• Requiring testing will help catch additional bugs and encourage research software to be
cleaner and more reusable.

• If papers are always accompanied by well-structured code, they may be easier to both
replicate and extend, which could spur innovation.

• Even if doing a full code review is not always feasible for overburdened paper reviewers,
the simple fact that a reviewer could potentially examine a paper’s code in a way that affects
the acceptance decision may make more authors follow better practices.

Of course, there are also negative potential consequences, including difficulty recruiting reviewers,
selection bias towards papers in areas that require more (or less) code, and inconsistencies in the
quality of code review that lead to unfair outcomes. However, these consequences seem possible to
avoid if the review process is well designed and implemented, and the potential benefits to machine
learning scholarship remain significant. As such, we recommend that a major machine learning
publication venue decide to experiment with this process, gather data, and recommend improvements.

4 Conclusion

In this paper, we argued that machine learning scholarship could be improved by adherence to software
development best practices. We described several practices that we believe could be particularly
helpful and described how they could be applied to machine learning research code. Finally, we
suggested a modification to the machine learning publication review process that we believe could
improve the reliability and reproducibility of results.

Overall, we hope the field of machine learning will encourage more research into critiquing and
correcting its own methodology. One area for future work that we believe would be fruitful (if
controversial) would be an empirical investigation into the prevalence of bugs in machine learning
research pipelines. We strongly suspect the issue is more prevalent and problematic than commonly
assumed, but have been unable to find any comprehensive studies that explore it. Given the frequency
with which bugs occur in commercial software, we believe it is important for the field’s credibility to
take steps to measure and mitigate its mistakes.

References
[1] https://en.wikipedia.org/wiki/List_of_probability_distributions.

[2] 2019 ICLR reproducibility challenge. https://reproducibility-challenge.github.
io/iclr_2019.

[3] CodaLab. http://codalab.org.

[4] SourceMaking Anti-Patterns. The blob. https://sourcemaking.com/antipatterns/
the-blob.

[5] Kane Baccigalupi. Going evergreen. http://confreaks.tv/videos/
rubyconf2014-going-evergreen, 2014.

[6] Virginia Barbour, Theodora Bloom, Jennifer Lin, and Elizabeth Moylan. Amending published
articles: time to rethink retractions and corrections? F1000Res., 6, November 2017.

[7] Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

4

https://en.wikipedia.org/wiki/List_of_probability_distributions
https://reproducibility-challenge.github.io/iclr_2019
https://reproducibility-challenge.github.io/iclr_2019
http://codalab.org
https://sourcemaking.com/antipatterns/the-blob
https://sourcemaking.com/antipatterns/the-blob
http://confreaks.tv/videos/rubyconf2014-going-evergreen
http://confreaks.tv/videos/rubyconf2014-going-evergreen


[8] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between probability
density functions. International Journal of Mathematical Models and Methods in Applied
Sciences, 1(4):300–307, 2007.

[9] Alex Cooper, Jamie Townsend, and Michael Hughes. autograd issue 412. https://github.
com/HIPS/autograd/pull/412, June 2018. Accessed: 2018-10-23.

[10] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. Code reviews do not find bugs: how
the current code review best practice slows us down. In Proceedings of the 37th International
Conference on Software Engineering-Volume 2, pages 27–28. IEEE Press, 2015.

[11] Andrii Degeler. Microsoft’s latest windows 10 update is report-
edly wiping user data. https://www.engadget.com/2018/10/05/
windows-10-october-update-1809-delete-data-wipe-user-profile/, October
2018. Accessed: 2018-11-26.

[12] Jessica Forde, Matthias Bussonnier, Félix-Antoine Fortin, Brian Granger, Tim Head, Chris
Holdgraf, Paul Ivanov, Kyle Kelley, M Pacer, Yuvi Panda, et al. Reproducing machine learning
research on Binder. In Machine Learning Open Source Software 2018: Sustainable communities
(NIPS 2018 Workshop), 2018.

[13] Martin Fowler. Extract variable. https://refactoring.com/catalog/extractVariable.
html, 1999.

[14] Martin Fowler. TwoHardThings. https://martinfowler.com/bliki/TwoHardThings.
html, 2009.

[15] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
improving the design of existing code. Addison-Wesley Professional, 1999.

[16] Roger B Grosse and David K Duvenaud. Testing MCMC code. 2014 NIPS workshop on
Software Engineering for Machine Learning, 2014.

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. AAAI Conference on Artificial Intelligence,
2018.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456, 2015.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

[20] Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems, pages 2575–
2583, 2015.

[21] Jon Kuperman. Parameter hell. https://codeplanet.io/parameter-hell, 2014.

[22] Zachary C Lipton and Jacob Steinhardt. Troubling trends in machine learning scholarship.
ICML 2018: The Debates, 2018.

[23] Richard Mann. Rethinking retractions. http://prawnsandprobability.blogspot.com/
2013/03/rethinking-retractions.html, 2013.

[24] Richard Mann. Rethinking retractions: Rethought. http://prawnsandprobability.
blogspot.com/2017/06/rethinking-retractions-rethought.html, 2016.

[25] Richard P Mann, Andrea Perna, Daniel Strömbom, Roman Garnett, James E Herbert-Read,
David J T Sumpter, and Ashley J W Ward. Multi-scale inference of interaction rules in animal
groups using bayesian model selection. PLoS Comput. Biol., 9(3):e1002961, March 2013.

[26] Robert C Martin. Agile software development: principles, patterns, and practices. Prentice
Hall, 2002.

5

https://github.com/HIPS/autograd/pull/412
https://github.com/HIPS/autograd/pull/412
https://www.engadget.com/2018/10/05/windows-10-october-update-1809-delete-data-wipe-user-profile/
https://www.engadget.com/2018/10/05/windows-10-october-update-1809-delete-data-wipe-user-profile/
https://refactoring.com/catalog/extractVariable.html
https://refactoring.com/catalog/extractVariable.html
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/TwoHardThings.html
https://codeplanet.io/parameter-hell
http://prawnsandprobability.blogspot.com/2013/03/rethinking-retractions.html
http://prawnsandprobability.blogspot.com/2013/03/rethinking-retractions.html
http://prawnsandprobability.blogspot.com/2017/06/rethinking-retractions-rethought.html
http://prawnsandprobability.blogspot.com/2017/06/rethinking-retractions-rethought.html


[27] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. The impact of code
review coverage and code review participation on software quality: A case study of the qt,
vtk, and itk projects. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 192–201. ACM, 2014.

[28] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural
language models. International Conference on Learning Representations, 2018.

[29] Sandi Metz and Katrina Owen. 99 bottles of OOP. https://www.sandimetz.com/
99bottles, 2017.

[30] Sandy Metz. The wrong abstraction. https://www.sandimetz.com/blog/2016/1/20/
the-wrong-abstraction, 2016.

[31] Don Norman. The design of everyday things: Revised and expanded edition. Constellation,
2013.

[32] Chris Olah and Shan Carter. Research debt. Distill, 2(3):e5, 2017.

[33] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

[34] Ali Rahimi and Ben Recht. Back when we were kids. NIPS Test-of-Time Award Talk, 2017.

[35] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, and Michael Young. Machine learning: The high interest credit card of technical
debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop), 2014.

[36] D. Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s curse? on pace, progress,
and empirical rigor. International Conference on Learning Representations, Workshop Track,
2018.

[37] Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in programmer behavior:
A model and experimental results. International Journal of Computer & Information Sciences,
8(3):219–238, 1979.

[38] Yoav Shoham, Raymond Perrault, Erik Brynjolfsson, and Jack Clark. Artificial intelligence
index, 2017 annual report. http://cdn.aiindex.org/2017-report.pdf, 2017.

[39] James Shore. The art of agile development: Test-driven development. https://www.
jamesshore.com/Agile-Book/test_driven_development.html, 2010.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

[41] Tom Warren. iOS 11 bugs are so common they now appear in apple ads. https:
//www.theverge.com/2018/3/16/17131148/apple-ios-11-bug-face-id-ad, March
2018. Accessed: 2018-11-26.

6

https://www.sandimetz.com/99bottles
https://www.sandimetz.com/99bottles
https://www.sandimetz.com/blog/2016/1/20/the-wrong-abstraction
https://www.sandimetz.com/blog/2016/1/20/the-wrong-abstraction
http://cdn.aiindex.org/2017-report.pdf
https://www.jamesshore.com/Agile-Book/test_driven_development.html
https://www.jamesshore.com/Agile-Book/test_driven_development.html
https://www.theverge.com/2018/3/16/17131148/apple-ios-11-bug-face-id-ad
https://www.theverge.com/2018/3/16/17131148/apple-ios-11-bug-face-id-ad

	Introduction: A Tale of Two Rigors
	Software Best Practices + ML
	Test-Driven Development
	Code Review
	Object-Oriented Design, Meaningful Names, and Refactoring

	Incentivizing Meaningful Change
	Conclusion

