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Abstract

Neural networks often perform better on prediction problems than simpler classes of
models, but their behavior is difficult to explain. This makes it challenging to trust
their predictions in safety critical domains. Recent work has focused on explaining
their predictions using local linear approximations [1, 10], but these explanations
can be complex when they depend on many features and it is unclear if they can
be used to understand global trends in model behavior. In this work, we train
neural networks to have sparse local explanations by applying L1 penalties to their
input gradients. We show explanations of these networks depend on fewer inputs
while their performance remains comparable across datasets and architectures. We
illustrate how our approach encourages a different kind of sparsity than L1 weight
decay. In a case study with ICU data, we observe that gradients vary smoothly over
the input space, which suggests they can be used to gain insight into the global
behavior of the model.

1 Introduction

Neural networks are the state of the art for many classification tasks. They work well for prediction
problems with large datasets that depend on feature interactions and nonlinearities. But their expres-
sivity comes at the cost of vulnerability to overfitting [13]. Held-out evaluations are effective but do
not catch overfitting to biases shared between train and test sets. Without explanations to help domain
experts identify these biases, neural networks may be unsafe for use in high risk domains [2].

An approach to interpreting the behavior of neural networks is to approximate the decision boundary
with a set of interpretable models at many points throughout the input space [10]. However these
explanations only capture very local trends in the model’s behavior. Whether they can be used to gain
a higher level understanding of how the model makes decisions is an open question.

We propose a penalty on neural networks that encourages the input gradients at each training data
point to be sparse. We find that this makes input gradient based explanations more concise, and the
variation of gradients across training points more structured, at no cost to accuracy. Section 2 outlines
related work, Section 3 describes the model, and Section 4 is a cross-dataset comparison of our model
with several others.
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2 Related Work

Interpreting neural networks is an active area of research. The approach that we build on generates
explanations from local linear approximations of the decision boundary. Ribeiro et al. [10] perturb
each data point and fit a linear model to mimic the neural network’s predictions. Baehrens et al. [1]
interpret the predictions of a neural network by examining the input gradients of each feature. We
build on Ross et al. [11] but without the need for expert annotation. Our work does not propose a new
explanation method but rather a modification to the underlying network to encourage more coherent
explanations when these methods are applied. Specifically, we use the same explanations as Baehrens
et al. [1] but train with a penalty that encourages them to be sparse.

Adding an L1 penalty to the weights of logistic regression is a common way to learn sparse models
[12]. These models depend on fewer features, which makes them more interpretable to humans [8].
The traditional neural network analogue applies a sparsity penalty to the weights of each neuron in
the network–this is called weight decay. This penalty can have several effects: reducing overfitting,
making learning easier, and making individual neurons more interpretable [3]. To the best of our
knowledge, the effects of this penalty on the local linear approximations of neural networks have
not been studied. We compare the effects of weight decay on input gradient explanations with our
proposed penalty that directly encourages them to be sparse.

3 Our Method: Gradient LASSO

Neural networks learn a function f(x|✓) that makes predictions ŷ 2 RK given features x 2 RD

about true labels y 2 RK . We train them by searching for parameters ✓ that minimize a loss function
usually defined as the cross entropy between our labels and predictions, H(y, ŷ).

In this paper, we add an additional term to the loss to encourage sparse local linear approximations.
This takes the form of an L1 penalty to the gradients with respect to the sum of log probabilities across
classes. This is proportional to the model’s cross-entropy with a uniformly random guess, which can
be interpreted as the model’s level of certainty about its prediction. The gradient of this quantity,
�r

x

P
K

k=1 log f(x)k, also represents the score function with respect to its inputs–a classic measure
of sensitivity. Empirically, we find that regularizing the gradient of the score function performs better
than regularizing gradients of probabilities or log-odds. Our full loss function is:
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where �
✓

controls the strength of the L1 penalty on our parameters and �r controls the strength of
the L1 penalty on our explanation. In our experiments, at most one of these will be nonzero in a given
model. We train by minimizing the average value of the loss across batches.

4 Empirical Evaluation

To study the effects of our regularization technique on neural network explanations, we conduct
experiments on several datasets. The following are classic machine learning examples. With the
Adult Census Income dataset [7], we predict whether yearly income is above $50,000 using z-scored
census data. With the 20 Newsgroups Subset dataset [7], we predict whether an article is from
the alt.atheism or soc.religion.christian newsgroup. We generate features by removing
headers, footers, and quotes, and vectorizing examples using 5,000 dimensional one-hot word
encodings selected with TF-IDF. With the MNIST [6] and CIFAR-10 [5] datasets, we predict the
digit in an image using raw pixels as features.

We also conduct experiments with a synthetic dataset designed to demonstrate the capabilities of our
method and a sepsis mortality prediction dataset where we conduct a more in-depth case study of
how input gradients change across the input space. We construct the synthetic dataset to test that
our model recovers the true explanation for data where labels depend on a small number of features
that vary across the input space. We draw 49 dimensions from N (0, 1), and offset one of 6 region
indicator dimensions by 10. The label is the sign of the product of 2 features determined by the
region. We generate an equal number of samples from each region. For the sepsis task, we predict
in-hospital mortality for patients from the Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC-III v1.4) database [4]. We use demographics and 4-hour time slices of ICU readings selected
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and preprocessed according to the procedure in Raghu et al. [9]. We robustly standardize the features
to mitigate the influence of outliers and balance class labels, holding out test data at the patient level.

In Table 1, we report holdout AUC, network weight L1 norms, and De↵ , a measure of the number of
relevant features. See the supplementary material for details about model architectures and training.

Dataset D Model AUC ||✓||1 De↵

Sparse Synthetic 49

Linear 0.498 0.53 32
Linear, �

✓

= 100 0.498 0.03 5
MLP, Normal 0.943 734 8
MLP, �

✓

= 0.0005 0.961 279 5
MLP, �r = 1 : 2 0.994 386 2

Adult Income 89

Linear 0.904 11 13
Linear, �

✓

= 100 0.905 7 10
MLP, Normal 0.905 792 35
MLP, �

✓

= 0.0005 0.910 55 15
MLP, �r = 1 : 10 0.910 406 9

Sepsis Mortality 47

Linear 0.809 4 29
Linear, �

✓

= 100 0.807 3 23
MLP, Normal 0.708 740 35
MLP, �

✓

= 0.0025 0.816 32 27
MLP, �r = 3 : 4 0.827 360 20

Newsgroups Subset 5000

Linear 0.891 14593 1789
Linear, �

✓

= 1 0.798 128 38
MLP, Normal 0.900 9611 4167
MLP, �

✓

= 0.0005 0.862 241 269
MLP, �r = 1 : 100 0.820 1488 35

Accuracy

MNIST 728 CNN6, Normal 99.3% 80534 408
CNN6,�r = 1 : 10 99.1% 71288 166

CIFAR-10 3072 CNN9, Normal 80.9% 51337 1472
CNN9,�r = 1 : 10 79.3% 49385 1432

Table 1: Cross-dataset comparison of heldout performance for different model types. We define
the “effective number of features” De↵ as the average number of features whose input gradient
magnitudes are at least 1

10 of the largest for each example. Gradient-regularized networks match the
sparsity of linear LASSO while maintaining predictiveness comparable to normal NNs.

Gradient LASSO achieves similar or greater predictive performance across a range of datasets
and model architectures. Gradient regularization improves accuracy on the sparse synthetic and
sepsis datasets, and does not significantly hurt accuracy on Adult Income, MNIST, and CIFAR-10.
On 20 Newsgroups, gradient LASSO performs much worse than the unregularized neural network
and logistic regression, suggesting that sparsity is not a useful prior for this dataset. However, it does
achieve the same sparsity as logistic LASSO while outperforming it in AUC. These results suggest
that a sparsity penalty can often be added to neural networks without a cost to accuracy.

Gradient LASSO and L1 weight decay encourage different types of sparsity. Across all rows
of Table, 1, L1 weight decay and gradient regularization both shrink parameters ✓ and reduce the
effective number of features De↵ , but ||✓||1 is consistently lower for weight-regularized models
and De↵ is consistently lower for gradient-regularized models. On the synthetic dataset, gradient-
regularized model gradients are smaller and more axis-aligned than weight-regularized models’
(Figure 1). On the sepsis dataset, we found that weight decay tended to encourage sparsity in hidden
unit activations rather than features. See the supplementary material for visualizations of explanations
for all datasets.

Gradient LASSO explanations exhibit smooth, clinically sensible contextual variation across
ICU predictions. Figure 2 shows the sepsis mortality input gradients of several clinically interesting
labs plotted against their values. Gradients of the gradient regularized neural network vary as a
function of the lab value. The gradients of the weight-regularized model stay relatively constant, while
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Figure 1: Positive class log probability input gradients for MLPs trained normally (left), with L1
weight regularization (middle), and with L1 gradient regularization (right) on sparse synthetic input
examples in the first “region.” Being in the 1st or 3rd quadrant determines class membership. Input
gradients of gradient-regularized models are smallest and most axis-aligned, indicating simultaneous
shrinkage and selection. They also exhibit the least variation with distance from the decision boundary.

Figure 2: Sepsis test set lab values plotted against their examples’ mortality gradients, with normal
ranges for each feature overlaid. The gradient-regularized MLP often learns a smoothly-varying
association between mortality risk and lab values outside their normal ranges. The weight-regularized
MLP gradients are more discretized and similar to the logistic regression weights. They generally
keeping the same sign regardless of feature value, even when clinically inappropriate.

the gradients of the unregularized model (which overfits) have less discernible structure. Although
Figure 2 only captures variation in a single dimension, in the supplementary material we show
that input gradient associations for gradient-regularized models exhibit smooth variations across
the PCA projection of the input space. The smoothness of this variation suggests that local linear
approximations can be used to gain insight into the global behavior of these networks. The variation
itself suggests they are still flexible enough to capture important nonlinearities in the data.

Gradient regularized and weight regularized neural network explanations encourage different behav-
iors and may be useful in different cases. In future work, we plan to further explore their differences.
In preliminary experiments, we also noticed that gradient-regularized neural networks are less certain
in their predictions (see supplement). We believe this occurs because imposing a penalty on the
gradient of the sum of log probabilities directly limits how quickly the model’s certainty can change
with changes in X , or alternatively because r

x

log f(x)
k

=

1
f(x)k

r
x

f(x)
k

becomes too large when
any predicted class probability f(x)

k

is too small. More balanced probabilities returned by the
model do not necessarily affect accuracy, but they may affect how predictions are interpreted by end
users. Regardless of whether this is desirable, our results demonstrate that we can regularize neural
networks to be locally sparse without being globally sparse. This makes them easier to interpret
without limiting their representational freedom.
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A Model Architectures

On the sparse synthetic, sepsis mortality, adult income, and 20 Newsgroups datasets, we trained three
versions of a 50x30 multilayer perceptron with ReLU nonlinearities using Tensorflow. All versions
are trained with 0.2 dropout on the first layer, the second with L1 weight decay, and the third with
gradient LASSO. On MNIST, we train 6-layer CNNs with 5x5x32 and 5x5x64 convolutional layers
followed by 2x2 max pooling and ending in a 1024-unit fully connected layer. On CIFAR-10, we train
9-layer CNNs with doubled sets of 3x3x64 and 3x3x128 convolutional layers, each followed by 2x2
max pooling and ending in two 256-unit fully connected layers. Both networks use ReLU activations,
batch normalization after every non-pooling layer, and 0.5 dropout after every fully connected layer.
We train both CNNs with and without gradient LASSO.

B Training Details

For all gradient-regularized neural networks, we determine �r using a ratio of initial cross-entropy
to initial gradient loss, since this trades off the terms of the loss more consistently across datasets,
random restarts, and loss function implementations (term magnitudes vary significantly based on
whether we average or sum across examples, features, and classes). For MLP and MNIST CNN
optimization, we use Adam [1] with its default settings (↵ = 0.001, ✏ = 10

�8) and training batch
sizes of 128. Due to differences in dataset size, we train MNIST for 5 epochs, sparse synthetic for 100
epochs, and the other datasets for 32 epochs. For CIFAR-10, we train for 25 epochs using stochastic
gradient descent with momentum = 0.9 and learning rate starting at 0.01 but decaying by factors of
0.5 per epoch after the 10th epoch.

C Additional Figures
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Figure 1: Sepsis mortality prediction network weights (left) and predicted vs. true mortality plotted
over PCA on the input space (right). In the network weight plot, input layer columns correspond
to features and rows correspond to hidden units. In addition to zeroing out significantly more
of the network’s weights, L1 weight decay appears to encourage sparsity with respect to hidden
units (rows) in the input layer, while gradient LASSO encourages sparsity with respect to features
(columns). In the predicted probability plot, the gradient regularized MLP exhibits much less certainty
about its predictions of survival than mortality, perhaps because our method directly penalizes
r

x

log f(x)

k

=

f

0(x)k
f(x)k

, which can only be small if all class probabilities f(x)
k

do not vanish.

Figure 2: Patients from the sepsis test set projected by PCA and colored by input gradients for a
subset of the 12 most significant features. Red and blue represent positive and negative associations
with mortality. Unlike the L1 weight-regularized MLP, but more smoothly than the normal MLP, the
gradient-regularized MLP learns different associations for the same feature in different regions of the
input space.

Figure 3: MNIST and CIFAR-10 examples (top) and input gradients from CNNs trained normally
(middle) and with L1 gradient regularization (bottom). CIFAR gradients are converted to grayscale
using methods from [2]. Regularized model gradients are smaller, sparser, and much more inter-
pretability related to the input images.
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Figure 4: Input gradient explanations for the Adult Income, Sepsis Hospital Mortality, and 20
Newsgroups datasets (across multiple examples). L1 gradient regularized models have the sparsest
gradients.

3


	Introduction
	Related Work
	Our Method: Gradient LASSO
	Empirical Evaluation

