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Abstract

Ensembles depend on diversity for improved performance.
Many ensemble training methods, therefore, attempt to op-
timize for diversity, which they almost always define in terms
of differences in training set predictions. In this paper, how-
ever, we demonstrate the diversity of predictions on the train-
ing set does not necessarily imply diversity under mild co-
variate shift, which can harm generalization in practical set-
tings. To address this issue, we introduce a new diversity met-
ric and associated method of training ensembles of models
that extrapolate differently on local patches of the data man-
ifold. Across a variety of synthetic and real-world tasks, we
find that our method improves generalization and diversity in
qualitatively novel ways, especially under data limits and co-
variate shift.

1 Introduction
An ensemble is generally more accurate than its constituent
models. However, for this to hold true, those models must
make different errors on unseen data (Hansen and Salamon
1990; Dietterich 2000). This is often described as the ensem-
ble’s “diversity.”

Despite diversity’s well-recognized importance, there is
no firm consensus on how best to foster it. Some procedures
encourage it implicitly, e.g. by training models with different
inputs (Breiman 1996), while others explicitly optimize for
proxies (Liu and Yao 1999) that tend to be functions of dif-
ferences in training set predictions (Kuncheva and Whitaker
2003; Brown et al. 2005).

However, there has been increasing criticism of super-
vised machine learning for focusing too exclusively on cases
where training and testing data are drawn from the same dis-
tribution (Liang 2018). In many real-world settings, this as-
sumption does not hold, e.g. due to natural covariate shift
over time (Quionero-Candela et al. 2009) or selection bias in
data collection (Zadrozny 2004). Intuitively, we might hope
that a “diverse” ensemble would more easily adapt to such
problems, since ideally different members would be robust
to different shifts. In this paper, however, we find that di-
verse ensemble methods that only encourage differences in
training predictions often perform poorly under mild drift
between training and test, in large part because models are
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not incentivized to make different predictions where there is
no data. We also find that ensemble methods that directly op-
timize for diverse training predictions face inherent tradeoffs
between diversity and accuracy and can be very sensitive to
hyperparameters.

To resolve these issues, we make two main contributions,
specifically (1) a novel and differentiable diversity measure,
defined as a formal proxy for the ability of classifiers to ex-
trapolate differently away from data, and (2) a method for
training an ensemble of classifiers to be diverse by this mea-
sure, which we hypothesize will lead to more robust predic-
tions under distributional shifts with no inherent tradeoffs
between diversity and accuracy except those imposed by the
dataset. We find this hypothesis holds on a range of synthetic
and real-world prediction tasks.

2 Related Work
Ensembling is a well-established subfield of supervised
learning (Breiman 1996; 2001; Ho 1995; Schapire 1990),
and one of its important lessons is that model diversity is
a necessary condition for creating predictive and robust en-
sembles (Krogh and Vedelsby 1995). There are a number
of methods for fostering diversity, which can be roughly di-
vided into two categories: those that implicitly promote di-
versity by random modifications to training conditions, and
those that explicitly promote it by deliberate modifications
to the objective function.

Some implicit diversity methods operate by introducing
stochasticity into which models see which parts of the data,
e.g. by randomly resampling training examples (Breiman
1996) or subsets of input features (Breiman 2001). Oth-
ers exploit model parameter stochasticity, e.g. by retraining
from different initializations (Kolen and Pollack 1991) or
sampling from parameter snapshots saved during individual
training cycles (Huang et al. 2017).

Methods that explicitly encourage diversity include boost-
ing (Schapire 1990; Freund and Schapire 1997), which se-
quentially modifies the objective function of each model to
specialize on previous models’ mistakes, or methods like
negative correlation learning (Liu and Yao 1999) amended
cross-entropy (Shoham and Permuter 2019), and DPPs over
non-maximal predictions (Pang et al. 2019), which simula-
teously train models with penalities on both individual er-
rors and pairwise similarities. Finally, methods such as Di-



verse Ensemble Evolution (Zhou, Wang, and Bilmes 2018)
and Competition of Experts (Parascandolo et al. 2017) use
explicit techniques to encourage models to specialize in dif-
ferent regions of input space.

Although at first glance these diverse training techniques
seem quite diverse themselves, they are all similar in a
crucial respect: they encourage diversity in terms of train-
ing set predictions. In the machine learning fairness, adver-
sarial robustness, and explainability communities, however,
there has been increasing movement away from the assump-
tion that train is similar to test. For example, many meth-
ods for locally explaining ML predictions literally present
simplified approximations of how models extrapolate away
from given points (Baehrens et al. 2010; Ribeiro, Singh,
and Guestrin 2016; Ross, Hughes, and Doshi-Velez 2017),
while adversarial attacks (and defenses) exploit (and mit-
igate) pathological extrapolation behavior (Szegedy et al.
2013; Madry et al. 2017), sometimes in an ensemble setting
(Tramèr et al. 2018). Although our focus is not explicitly on
explanability or adversarial robustness, our method can be
seen as a reapplication of techniques in those subfields to
the problem of ensemble diversity.

Also related is the subfield of streaming data, which
sometimes uses ensemble diversity metrics as a criteria for
deciding when covariates have shifted sufficiently to war-
rant retraining (Brzezinski and Stefanowski 2016; Krawczyk
et al. 2017). Although our focus remains on non-streaming
classification, the method we introduce may be applicable to
that domain.

3 Method
In this section, building on Ross, Pan, and Doshi-Velez
(2018), we define our diversity measure and training pro-
cedure, beginning with notation. We use x to denote D-
dimensional inputs, which are supported over an input space
Ωx ⊆ RD. We use y to denote prediction targets in an output
space Ωy . In this paper, Ωy will be R, and we focus on the
case where it represents a log-odds used for binary classifi-
cation, but our method can be generalized to classification or
regression in RK given any notion of distance between out-
puts. We seek to learn prediction models f(·; θ) : Ωx → Ωy
(parameterized by θ) that estimate y from x. We assume
these models f are differentiable with respect to x and θ
(which is true for linear models and neural networks).

In addition, we suppose a joint distribution over inputs
and targets p(x, y) and a distribution p(y|f(x; θ)) quantify-
ing the likelihood of the observed target given the model
prediction. Typically, during training, we seek model pa-
rameters that maximize the likelihood of the observed data,
Ep(x,y) [log p(y|f(x; θ))].

3.1 Diversity Measure: Local Independence
We now introduce a model diversity measure that quan-
tifies how differently two models generalize over small
patches of the data manifold Ωx. Formally, we define an
ε-neighborhood of x, denoted Nε(x), on the data manifold
to be the intersection of an ε-ball centered at x in the in-
put space, Bε(x) ⊂ RD, and the data manifold: Nε(x) =

Bε(x)∩Ω. We capture the notion of generalization difference
on a small neighborhood of x through an intuitive geomet-
ric condition: we say that two functions f and g generalize
maximally differently at x if f is invariant in the direction
of of the greatest change in g (or vice versa) within an ε-
neighborhood around x. That is:

f (x) = f (xgmax) , for all ε′ < ε, (1)

where we define xgmax = arg max
x′∈Nε′ (x)

g(x′). In other words,

perturbing x by small amounts to increase g inside Nε does
not change the value of f . In the case that a choice of ε exists
to satisfy Equation 1, we say that f is locally independent at
x. We call f and g locally independent without qualification
if for every x ∈ Ωx the functions f and g are locally inde-
pendent at x for some choice of ε. We note that in order for
the right-hand side expression of 1 to be well-defined, we
assume that the gradient of g is not zero at x and that ε is
chosen to be small enough that g is convex or concave over
Nε(x).

In the case that f and g are classifiers, local independence
intuitively implies a kind of dissimilarity between their de-
cision boundaries. For example, if f and g are linear and the
data manifold is Euclidean, then f and g are locally indepen-
dent if and only if their decision boundaries are orthogonal.

This definition motivates the formulation of a diversity
measure, IndepErr(f, g), quantifying how far f and g are
from being locally independent:

IndepErr(f, g) ≡ E
[
(f (xgmax)− f (x))

2] . (2)

3.2 Local Independence Training (LIT)
Using Equation 2, we can formulate an ensemble-wide loss
function L for a set of models {θm} as follows, which we
call local independence training:

L({θm}) =
∑
m

Ep(x,y) [− log p(y|f(x; θm))]

+ λ
∑
6̀=m

IndepErr(f(·; θm), f(·; θ`)).
(3)

The first term encourages each model fm to be predictive
and the second encourages diversity in terms of IndepErr
(with a strength hyperparameter λ). Computing IndepErr
exactly, however, is challenging, because it requires an in-
ner optimization of g. Although it can be closely approxi-
mated for fixed small ε with projected gradient descent as
in adversarial training (Madry et al. 2017), that procedure
is computationally intensive. If we let ε → 0, however, we
can approximate xgmax by a fairly simple equation that only
needs to compute ∇g once per x. In particular, we observe
that under certain smoothness assumptions on g, with un-
constrained Ωx,1 and as ε → 0, we can make the approxi-
mation

xgmax ≈ x+ ε∇g(x). (4)

1The simplifying assumption that Nε(x) ≈ Bε(x) in a lo-
cal neighborhood around x is significant, though not always inap-
propriate. We discuss both limitations and generalizations in Sec-
tion A.1.



Assuming similar smoothness assumptions on f (so we can
replace it by its first-order Taylor expansion), we see that

f(xgmax)− f(x)
≈ f(x+ ε∇g(x))− f(x)
=
[
f(x) + ε∇f(x)ᵀ∇g(x) +O(ε2)

]
− f(x)

≈ ε∇f(x)ᵀ∇g(x).

(5)

In other words, the independence error between f and g is
approximately equal to the dot product of their gradients
∇f(x)ᵀ∇g(x). Empirically, we find it helpful to normal-
ize the dot product and work in terms of cosine similarity
cos(∇f(x),∇g(x)) ≡ ∇f(x)ᵀ∇g(x)

||∇f(x)||2||∇g(x)||2 ∈ [−1, 1]. We
also add a small constant value to the denominator to pre-
vent numerical underflow.

Alternate statistical formulation: As another way of ob-
taining this cosine similarity approximation, suppose we
sample small perturbations ε ∼ N (0, σ2I) and evalu-
ate f(x + ε)−f(x) and g(x + ε)−g(x). As σ→0, these
differences approach εᵀ∇f(x) and εᵀ∇g(x), which are
1D Gaussian random variables whose correlation is given
by cos(∇f(x),∇g(x)) and whose mutual information is
− 1

2 ln(1−cos2(∇f(x),∇g(x))) per Gretton, Herbrich, and
Smola (2003). Therefore, making the input gradients of f
and g orthogonal is equivalent to enforcing statistical in-
dependence between their outputs when we perturb x with
samples fromN (0, σ2I) as σ → 0. This could be used as an
alternate definition of “local independence.”

Final LIT objective term: Motivated by the approxima-
tions and discussion above, we substitute

CosIndepErr(f, g) ≡ E
[
cos2(∇f(x),∇g(x))

]
(6)

into our ensemble loss from Equation (3), which gives us a
final loss function

L({θm}) =
∑
m

Ep(x,y) [− log p(y|f(x; θm))]

+ λ
∑
6̀=m

Ep(x)
[
cos2(∇f(x; θm),∇f(x; θ`))

]
.

(7)

Note that we will sometimes abbreviate CosIndepErr as
∇cos2 . In Section 4 as well as Figure 10, we show that
CosIndepErr is meaningfully correlated with other diver-
sity measures and therefore may be useful in its own right,
independently of its use within a loss function.

4 Experiments
On synthetic data, we show that ensembles trained with LIT
exhibit more diversity in extrapolation behavior. On a range
of benchmark datasets, we show that the extrapolation diver-
sity in LIT ensembles corresponds to improved predictive
performance on test data that are distributed differently than
train data. Finally, in a medical data case study, we show that
models in LIT ensembles correspond to qualitatively differ-
ent and clinically meaningful explanations of the data.

Training: For the experiments that follow, we use
256-unit single hidden layer fully connected neural
networks with rectifier activations, trained in Tensor-
flow with Adam. For the real-data experiments, we
use dropout and L2 weight decay with a penalty of
0.0001. Code to replicate all experiments is available at
https://github.com/dtak/lit.

Baselines: We test local independence training (“LIT”)
against random restarts (“RRs”), bagging (Breiman 1996)
(“Bag”), AdaBoost (Hastie et al. 2009) (“Ada”), 0-1 squared
loss negative correlation learning Liu and Yao (1999)
(“NCL”), and amended cross-entropy (Shoham and Per-
muter 2019) (“ACE”). We omit Zhou, Wang, and Bilmes
(2018) and Parascandolo et al. (2017) which require more
complex inner submodular or adversarial optimization steps,
but note that because they also operationalize diversity as
making different errors on training points, we expect the re-
sults to be qualitatively similar to ACE and NCL.

Hyperparameters: For our non-synthetic results, we test
all methods with ensemble sizes in {2, 3, 5, 8, 13}, and all
methods with regularization parameters λ (LIT, ACE, and
NCL) with 16 logarithmically spaced values between 10−4

and 101, using validation AUC to select the best performing
model (except when examining how results vary with λ or
size). For each hyperparameter setting and method, we run
10 full random restarts (though within each restart, different
methods are tested against the same split), and present mean
results with standard deviation errorbars.

4.1 Conceptual Demonstration
To provide an initial demonstration of our method and the
limitations of training set prediction diversity, we present
several sets of 2D synthetic examples in Figure 1. These
2D examples are constructed to have data distributions that
satisfy our assumption that Nε(x) ≈ Bε(x) locally around
almost all of the points, but nevertheless contain significant
gaps. These gaps result in the possibility of learning mul-
tiple classifiers that have perfect accuracy on the training
set but behave differently when extrapolating. Indeed, in all
of these examples, if we have just two classifiers, they can
completely agree on training and completely disagree in the
extrapolation regions.

Figure 1: 2D synthetic datasets with gaps. We argue that “di-
verse” ensemble methods applied to these datasets should
produce accurate models with different decision boundaries.

In Figure 2, we compare the neural network decision
boundaries learned by random restarts, local independence



Random Split

Method Mushroom Ionosphere Sonar SPECTF Electricity
AUC ρav ∇cos2 AUC ρav ∇cos2 AUC ρav ∇cos2 AUC ρav ∇cos2 AUC ρav ∇cos2

RRs 1.0 1±.1 .9±0 .95±.03 .9±.1 1±0 .91±.06 .9±.1 1±0 .80±.06 .9±.1 1±0 .87±.00 1±0 1±0
Bag 1.0 1±0 .9±0 .96±.02 .7±.1 .5±.1 .90±.06 .5±.2 .5±.1 .80±.05 .6±.1 .4±.1 .87±.00 .9±0 1±0
Ada 1.0 — — .95±.03 — — .91±.06 — — .80±.06 — — .88±.00 .2±0 .2±.1
NCL 1.0 1±0 .8±0 .96±.04 .6±.5 .7±.3 .91±.06 .6±.5 .7±.4 .80±.07 .6±.5 .7±.3 .87±.00 .4±.1 .6±0
ACE 1.0 1±0 .9±0 .94±.04 .8±.3 .9±.2 .90±.06 .9±.2 1±.1 .79±.06 .8±.4 .9±.2 .87±.00 .9±0 1±0
LIT 1.0 .9±.1 0±0 .98±.01 .3±.1 0±0 .92±.05 .5±.2 0±0 .81±.06 .4±.1 0±0 .87±.00 .9±0 .3±.1

Extrapolation Split

Method Mushroom Ionosphere Sonar SPECTF Electricity
AUC ρav ∇cos2 AUC ρav ∇cos2 AUC ρav ∇cos2 AUC ρav ∇cos2 AUC ρav ∇cos2

RRs .92±.00 .9±0 .8±0 .87±.02 1±0 1±0 .81±.02 1±0 1±0 .83±.05 1±0 1±0 .86±.00 1±0 1±0
Bag .91±.00 .9±0 .9±0 .89±.04 .6±.1 .5±.1 .82±.03 .7±.1 .6±0 .83±.05 .6±.1 .4±0 .86±.00 .9±0 .9±0
Ada .92±.01 — — .87±.02 — — .81±.03 — — .83±.05 — — .86±.00 .3±.1 .3±.2
NCL .94±.01 .6±.2 .6±.1 .90±.02 .8±.3 .9±.2 .78±.06 .5±.5 .6±.3 .81±.12 .5±.6 .7±.3 .86±.00 .9±.2 1±.1
ACE .92±.00 .9±0 .8±0 .90±.03 .3±.4 .5±.3 .77±.06 .6±.5 .7±.3 .72±.16 .5±.6 .7±.4 .86±.00 1±0 1±0
LIT .96±.01 .3±.1 0±0 .96±.02 .2±.1 0±0 .81±.03 .5±.1 0±0 .84±.05 .4±.1 0±0 .87±.00 .4±.2 0±0

Table 1: Benchmark classification results in both the normal prediction task (top) and the extrapolation task (bottom) over 10
reruns, with errorbars based on standard deviations and bolding based on standard error overlap. On random splits, LIT offers
modest AUC improvements over random restarts, on par with other ensemble methods. On extrapolation splits, however, LIT
tends to achieve higher AUC. In both cases, LIT almost always exhibits low pairwise Pearson correlation between heldout
model errors (ρav), and for other methods, ρav roughly matches pairwise gradient cosine similarity (∇cos2 ).

Figure 2: Comparison of local independence training, ran-
dom restarts and NCL on toy 2D datasets. For each ensem-
ble, the first model’s decision boundary is plotted in orange
and the other in dashed blue. Both NCL and LIT are capable
of producing variation, but in qualitatively different ways.

training, and negative correlation learning (NCL) on these
examples (we use NCL as a state-of-the-art example of an
approach that defines diversity with respect to training pre-
dictions). Starting with the top and bottom two rows (ran-

dom restarts and LIT), we find that random restarts give
us essentially identical models, whereas LIT outputs mod-
els with meaningfully different decision boundaries even at
values of λ that are very low compared to its prediction loss
term. This is in large part because on most of these tasks
(except Dataset 3), there is very little tradeoff to learning a
near-orthogonal boundary. At larger λ, LIT outputs decision
boundaries that are completely orthogonal (at the cost of a
slight accuracy reduction on Dataset 3).

NCL had more complicated behavior, in large part be-
cause of its built-in tradeoff between accuracy and diversity.
At low values of λ (second from top), we found that NCL
produced models with identical decision boundaries, sug-
gesting that training ignored the diversity term. At λ ≥ 2, the
predictive performance of one model fell to random guess-
ing, suggesting that training ignored the accuracy term. So
in order to obtain meaningfully diverse but accurate NCL
models, we iteratively searched for the highest value of λ
at which NCL would still return two models at least 90%
accurate on the training set (by exponentially shrinking a
window between λ = 1 and λ = 2 for 10 iterations). What
we found (middle row) is that NCL learned to translate its
decision boundaries within the support of the training data
(incurring an initially modest accuracy cost due to the geom-
etry of the problem) but not modify them outside the train-
ing support. Although this kind of diversity is not necessar-
ily bad (since the ensemble accuracy remains perfect), it is
qualitatively different from the kind of diversity encouraged
by LIT—and only emerges at carefully chosen hyperparam-
eter values. The main takeaway from this set of synthetic
examples is that methods that encourage diverse extrapola-
tion (like LIT) can produce significantly different ensembles
than methods that encourage diverse prediction (like NCL).

4.2 Classification Benchmarks
Next, we test our method on several standard binary clas-
sification datasets from the UCI and MOA repositories



(Lichman 2013; Bifet et al. 2010). These are mushroom,
ionosphere, sonar, spectf, and electricity
(with categorical features one-hot encoded, and all features
z-scored). For all datasets, we randomly select 80% of the
dataset for training and 20% for test, then take an additional
20% split of the training set to use for validation. In addition
to random splits, we also introduce an extrapolation task,
where instead of splitting datasets randomly, we train on
the 50% of points closest to the origin (i.e. where ||x||2 is
less than its median value) and validate/test on the remain-
ing points (which are furthest from the origin). This test is
meant to evaluate robustness to covariate shift.

For each ensemble, we measure heldout AUC and accu-
racy, our diversity metric CosIndepErr (abbreviated as
∇cos2 ), and several classic diversity metrics (ρav , Qav , and
κ) defined by Kuncheva and Whitaker (2003). Table 1 com-
pares heldout AUC, ρav , and ∇cos2 after cross-validating
λ and the ensemble size. More complete enumerations of
AUC, accuracy, and diversity metrics are shown in Figures
9 and 10. In general, we find that LIT is competitive on
random splits, strongest on extrapolation, and significantly
improves heldout prediction diversity across the board. We
also find that∇cos2 is meaningfully related to other diversity
metrics for all models that do not optimize for it.

4.3 ICU Mortality Case Study
As a final set of experiments, we run a more in-depth case
study on a real world clinical application. In particular, we
predict in-hospital mortality for a cohort of n = 1, 053, 490
patient visits extracted from the MIMIC-III database (John-
son et al. 2016) based on on labs, vital signs, and basic de-
mographics. We follow the same cohort selection and fea-
ture selection process as Ghassemi et al. (2017). In addition
to this full cohort, we also test on a limited data task where
we restrict the size of the training set to n = 1000 to mea-
sure robustness.

We visualize the results of these experiments in several
ways to help tease out the effects of λ, ensemble size, and
dataset size on individual and ensemble predictive perfor-
mance, diversity, and model explanations. Table 2 shows
overall performance and diversity metrics for these two tasks
after cross-validation, along with the most common values
of λ and ensemble size selected for each method. Drilling
into the n = 1000 results, Figure 3 visualizes how multiple
metrics for performance (AUC and accuracy) and diversity
(ρav and∇cos2 ) change with λ, while Figure 4 visualizes the
relationship between optimal λ and ensemble size.

Figure 5 (as well as Figures 7 and 8) visualize changes in
the marginal distributions of input gradients for each model
in their explanatory sense (Baehrens et al. 2010). As a quali-
tative evaluation, we discussed these explanation differences
with two intensive care unit clinicians and found that LIT re-
vealed meaningful redundancies in which combinations of
features encoded different underlying conditions.

5 Discussion
LIT matches or outperforms other methods, especially
under data limits or covariate shift. On the UCI datasets

ICU Mortality Task, Full Dataset (n > 106)
Method AUC ρav ∇cos2 # λ

RRs .750±.000 .9±0 .9±0 13 —
Bag .751±.000 .9±0 .9±0 8 —
Ada .752±.003 0±0 0±0 8 —
ACE .750±.000 .9±0 .9±0 13 100.33

NCL .753±.001 .3±.2 .2±.2 13 100.00

LIT .750±.001 .8±0 .3±0 3 10−4.00

ICU Mortality Task, Limited Slice (n = 103)
Method AUC ρav ∇cos2 # λ

RRs .684±.001 .8±0 .8±0 8 —
Bag .690±.002 .5±0 .3±0 8 —
Ada .678±.003 .6±0 .5±0 2 —
ACE .684±.001 .8±0 .8±0 2 10−2.67

NCL .697±.006 .2±.4 .6±.2 13 100.33

LIT .711±.001 .1±0 0±0 13 10−2.33

Table 2: Quantitative results on the ICU mortality prediction
task, where # and λ signify the most commonly selected
values of ensemble size and regularization parameter chosen
for each method. On the full data task, although all methods
perform similarly, NCL and AdaBoost edge out slightly, and
LIT consistently selects its weakest regularization parame-
ter. On the limited data task, LIT significantly outperforms
baselines, with NCL and Bagging in second, ACE indistin-
guishable from restarts, and significantly worse performance
for AdaBoost (which overfits).

under train
d
≈ test conditions (random splits), LIT always

offers at least modest improvements over random restarts,
and often outperforms other baselines. Under extrapolation
splits, LIT tends to do significantly better. This pattern re-
peats itself on the normal vs. data-limited versions of ICU
mortality prediction task. We hypothesize that on small or
selectively restricted datasets, there is typically more predic-
tive ambiguity, which hurts the generalization of normally
trained ensembles (who consistently make similar guesses
on unseen data). LIT is more robust to these issues.

Gradient cosine similarity can be a meaningful diversity
metric. In Table 1 as well as our more complete results
in Figure 10, we saw that for non-LIT methods, gradient
similarity ∇cos2 (which does not require labels to compute)
was often similar in value to error correlation ρav (as well
as the interrater agreement κ, or Yule’s Q-statistic Qav af-
ter a monotonic transformation—all measures which do re-
quire labels to compute). One potential explanation for this
correspondence is that, by our analysis at the end of Sec-
tion 3.2, ∇cos2 can literally be interpreted as an average
squared correlation (between changes in model predictions
over infinitesimal Gaussian perturbations away from each
input). We hypothesize that ∇cos2 may be a useful quantity
independently of LIT.

LIT is less sensitive to hyperparameters than baselines,
but ensemble size matters more. In both our synthetic
examples (Figure 2) and our ICU mortality results (Figures
3 and 4), we found that LIT produced qualitatively similar



Figure 3: Changes in individual AUC/accuracy and en-
semble diversity with λ for two-model ensembles on the
ICU mortality dataset (averaged across 10 reruns, error-bars
omitted for clarity). For NCL and ACE, there is a wide
low-λ regime where they are indistinguishable from ran-
dom restarts. This is followed by a very brief window of
meaningful diversity (around λ = 1 for NCL, slightly lower
for ACE), after which both methods output pairs of models
which always predict 0 and 1 (respectively), as shown by
the error correlation dropping to -1. LIT, on the other hand,
exhibits smooth drops in individual model predictive perfor-
mance, with error correlation falling towards 0. Results for
other ensemble sizes were qualitatively similar.

(diverse) results over several orders of magnitude of λ. NCL,
on the other hand, required careful tuning of λ to achieve
meaningful diversity (before its performance plummeted).
In line with the results from our synthetic examples, we be-
lieve this difference stems from the fact that NCL’s diversity
term is formulated as a direct tradeoff with individual model
accuracy, so the balance must be precise, whereas LIT’s di-
versity term can theoretically be completely independent of
individual model accuracy (which is true by construction in
the synthetic examples). However, datasets only have the ca-
pacity to support a limited number of (mostly or completely)
locally independent models. On the synthetic datasets, this
capacity was exactly 2, but on real data, it is generally un-
known, and it may be possible to achieve similar results ei-
ther with a small fully independent ensemble or a large par-
tially independent ensemble. For example, in Figure 4, we
show that we can achieve similar improvements to ICU mor-
tality prediction with 2 highly independent (λ = 100) mod-
els or 13 more weakly independent (λ = 10−2.33) models.
We hypothesize that the trend-line of optimal LIT ensemble
size and λmay be a useful tool for characterizing the amount
of ambiguity present in a dataset.

Figure 4: Another exploration of the effect of ensemble size
and λ on ICU mortality predictions. In particular, we find
that for LIT on this dataset, the optimal value of λ depends
on the ensemble size in a roughly log-linear relationship.
Because D-dimensional datasets can support a maximum of
D locally independent models (and only one model if the
data completely determines the decision boundary), it is in-
tuitive that there should be an optimal value. For NCL, we
also observe an optimal value near 100.33, but with a less
clear relationship to ensemble size and very steep dropoff to
random guessing at slightly higher λ.

Interpretation of individual LIT models can yield use-
ful dataset insights. In Figure 5, we found that in dis-
cussions with ICU clinicians, mortality feature assocations
for normally trained neural networks were somewhat con-
fusing due to hidden collinearities. LIT models made more
clinical sense individually, and the differences between them
helped reveal those collinearities (in particular between ele-
vated levels of blood urea nitrogen and creatinine). Because
LIT ensembles are often optimal when small, and because
individual LIT models are not required to sacrifice accu-
racy for diversity, they may enable different and more useful
kinds of data interpretation than other ensemble methods.

Limitations. LIT does come with restrictions and limita-
tions. In particular, we found that it works well for rectifier
activations (e.g. ReLU and softplus2) but leads to inconsis-
tent behavior with others (e.g. sigmoid and tanh). This may
be related to the linear rather than saturating extrapolation
behavior of rectifiers. Because it relies on cosine similarity,
LIT is also sensitive to relative changes in feature scaling;
however, in practice this issue can be resolved by standard-
izing variables first.

Additionally, our cosine similarity approximation in LIT
makes the assumption that the data manifold is locally simi-
lar to RD near most inputs. However, we introduce general-
izations in Section A.1 to handle situations where this is not

2Although we used ReLU in our quantitative experiments, we
found more consistent behavior in synthetic examples with soft-
plus, perhaps due to its many-times differentiability.



Figure 5: Differences in cross-patient gradient distributions
of ICU mortality prediction models for random restart and
locally independent ensembles (similar plots for other meth-
ods are shown in Figure 8). Features with mass consistently
above the x-axis have positive associations with predicted
mortality (increasing them increases predicted mortality)
while those with mass consistently below the x-axis have
negative associations (decreasing them increases predicted
mortality). Distance from the x-axis corresponds to the asso-
ciation strength. Models trained normally (top) consistently
learn positive associations with age and bun (blood urea
nitrogen; larger values indicate kidney failure) and negative
associations with weight and urine (low weight is cor-
related with mortality; low urine output also indicates kid-
ney failure or internal bleeding). However, they also learn
somewhat negative associations with creatinine, which
confused clinicians because high values are another indica-
tor of kidney failure. When we trained LIT models, how-
ever, we found that creatinine regained its positive as-
sociation with mortality (in model 2), while the other main
features were more or less divided up. This collinearity be-
tween creatinine and bun/urine in indicating organ
problems (and revealed by LIT) was one of the main insights
derived in our qualitative evaluation with ICU clinicians.

approximately true (such as with image data).
Finally, LIT requires computing a second derivative (the

derivative of the penalty) during the optimization process,
which increases memory usage and training time; in prac-
tice, LIT took approximately 1.5x as long as random restarts,
while NCL took approximately half the time. However, sig-
nificant progress is being made on making higher-order au-
todifferentiation more efficient (Betancourt 2018), so we can
expect improvements. Also, in cases where LIT achieves
high accuracy with a comparatively small ensemble size
(e.g. ICU mortality prediction), overall training time can re-
main short if cross-validation terminates early.

6 Conclusion and Future Work
In this paper, we presented a novel diversity metric that
formalizes the notion of difference in local extrapolations.
Based on this metric we defined an ensemble method, lo-

cal independence training, for building ensembles of highly
predictive base models that generalize differently outside the
training set. On datasets we knew supported multiple diverse
decision boundaries, we demonstrated our method’s ability
to recover them. On real-world datasets with unknown lev-
els of redundancy, we demonstrated that LIT ensembles per-
form competitively on traditional prediction tasks and were
more robust to data scarcity and covariate shift (as measured
by training on inliers and testing on outliers). Finally, in our
case study on a clinical prediction task in the intensive care
unit, we provided evidence that the extrapolation diversity
exhibited by LIT ensembles improved data robustness and
helped us reach meaningful clinical insights in conversations
with clinicians. Together, these results suggest that extrapo-
lation diversity may be an important quantity for ensemble
algorithms to measure and optimize.

There are ample directions for future improvements. For
example, it would be useful to consider methods for aggre-
gating predictions of LIT ensembles using a more complex
mechanism, such as a mixture-of-experts model. Along sim-
ilar lines, combining pairwise IndepErrs in more informed
way, such as a determinantal point process penalty (Kulesza,
Taskar, and others 2012) over the matrix of model similari-
ties, may help us better quantify the diversity of the ensem-
ble. Another interesting extension of our work would be to
prediction tasks in semi-supervised settings, since labels are
generally not required for computing local independence er-
ror. Finally, as we observe in the Section 5, some datasets
seem to support a particular number of locally independent
models. It is worth exploring how to connect this property
to attempts to formally quantify and characterize the com-
plexity or ambiguity present in a prediction task (Lorena et
al. 2018; Semenova and Rudin 2019).
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Woźniak, M. 2017. Ensemble learning for data stream anal-
ysis: A survey. Information Fusion.
Krogh, A., and Vedelsby, J. 1995. Neural network ensem-
bles, cross validation, and active learning. In Advances in
neural information processing systems.
Kulesza, A.; Taskar, B.; et al. 2012. Determinantal point
processes for machine learning. Foundations and Trends R©
in Machine Learning.
Kuncheva, L. I., and Whitaker, C. J. 2003. Measures of
diversity in classifier ensembles and their relationship with
the ensemble accuracy. Machine learning 51(2).
Liang, P. 2018. How should we evaluate machine learn-
ing for ai? Thirty-Second AAAI Conference on Artificial
Intelligence.
Lichman, M. 2013. UCI ml repository.
Liu, Y., and Yao, X. 1999. Simultaneous training of neg-
atively correlated neural networks in an ensemble. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics) 29(6).

Lorena, A. C.; Garcia, L. P.; Lehmann, J.; Souto, M. C.; and
Ho, T. K. 2018. How complex is your classification prob-
lem? a survey on measuring classification complexity. arXiv
preprint arXiv:1808.03591.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083.

Pang, T.; Xu, K.; Du, C.; Chen, N.; and Zhu, J. 2019. Im-
proving adversarial robustness via promoting ensemble di-
versity. arXiv preprint arXiv:1901.08846.

Parascandolo, G.; Kilbertus, N.; Rojas-Carulla, M.; and
Schölkopf, B. 2017. Learning independent causal mech-
anisms. arXiv preprint arXiv:1712.00961.

Quionero-Candela, J.; Sugiyama, M.; Schwaighofer, A.; and
Lawrence, N. D. 2009. Dataset shift in machine learning.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why
should i trust you?: Explaining the predictions of any classi-
fier. In Proceedings of the 22nd ACM SIGKDD International
Conference on knowledge discovery and data mining. ACM.

Ross, A. S.; Hughes, M. C.; and Doshi-Velez, F. 2017.
Right for the right reasons: Training differentiable mod-
els by constraining their explanations. arXiv preprint
arXiv:1703.03717.

Ross, A.; Pan, W.; and Doshi-Velez, F. 2018. Learning
qualitatively diverse and interpretable rules for classifica-
tion. In 2018 ICML Workshop on Human Interpretability
in Machine Learning.

Schapire, R. E. 1990. The strength of weak learnability.
Machine learning 5(2).

Semenova, L., and Rudin, C. 2019. A study in rashomon
curves and volumes: A new perspective on generalization
and model simplicity in machine learning. arXiv preprint
arXiv:1908.01755.

Shoham, R., and Permuter, H. 2019. Amended cross-
entropy cost: An approach for encouraging diversity in clas-
sification ensemble (brief announcement). In International
Symposium on Cyber Security Cryptography and Machine
Learning.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.

Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2018. Ensemble adversarial
training: Attacks and defenses. In International Conference
on Learning Representations.

Zadrozny, B. 2004. Learning and evaluating classifiers un-
der sample selection bias. In Twenty-first International Con-
ference on Machine learning.

Zhou, T.; Wang, S.; and Bilmes, J. A. 2018. Diverse en-
semble evolution: Curriculum data-model marriage. In Ad-
vances in Neural Information Processing Systems 31.



A Appendix
A.1 Imposing Penalties over Manifolds
In the beginning of our derivation of CosIndepErr (Equa-
tion 4), we assumed that locally, Nε(x) ≈ Bε(x). However,
in many cases, our data manifold Ωx is much lower dimen-
sional than RD. In these cases, we have additional degrees
of freedom to learn decision boundaries that, while locally
orthogonal, are functionally equivalent over the dimensions
which matter. To restrict spurious similarity, we can project
our gradients down to the data manifold. Given a local basis
for its tangent space, we can accomplish this by taking dot
products between ∇f and ∇g and each tangent vector, and
then use these two vectors of dot products to compute the co-
sine similarity in Equation 6. More formally, if J(x) is the
Jacobian matrix of manifold tangents at x, we can replace
our regular cosine penalty with

ManifIndepErr(f, g) ≡ E
[
cos2(∇f‖J(x),∇g‖J(x)),

]
where ∇f‖J(x) = f(x)ᵀJ(x),

∇g‖J(x) = g(x)ᵀJ(x)
(8)

An example of this method applied to a toy example is given
in Figure 6. Alternatively, if we are using projected gradient
descent adversarial training to minimize the original formu-
lation in Equation 2, we can modify its inner optimization
procedure to project input gradient updates back to the man-
ifold.

Figure 6: Synthetic 2D manifold dataset (randomly sam-
pled from a neural network) embedded in R3, with deci-
sion boundaries shown in 2D chart space (top) and the 3D
embedded manifold space (bottom). Naively imposing LIT
penalties in R3 (middle) leads to only slight differences in
the chart space decision boundary, but given knowledge of
the manifold’s tangent vectors (right), we can recover maxi-
mally different chart space boundaries.

For many problems of interest, we do not have a closed
form expression for the data manifold or its tangent vec-
tors. In this case, however, we can approximate one, e.g. by
performing PCA or training an autoencoder. Local indepen-
dence training can also simply be used on top of this learned
representation directly.

A.2 Additional Figures

Figure 7: Violin plots showing marginal distributions of ICU
mortality input gradients across heldout data for 5-model en-
sembles trained on the n = 1000 slice (top 5 plots) and
restarts on the full dataset (bottom). Distributions for each
model in each ensemble are overlaid with transparency in
the top 4 plots. From the top, we see that restarts and NCL
learn models with similar gradient distributions. Bagging is
slightly more varied, but only LIT (which performs signifi-
cantly better on the prediction task) exhibits significant dif-
ferences between models. When LIT gradients on this lim-
ited data task are averaged (second from bottom), their dis-
tribution comes to resemble (in both shape and scale) that
of a model trained on the full dataset (bottom), which may
explain LIT’s stronger performance.

Figure 8: Companion to Figure 5 showing differences in the
distributions of input gradients for other 2-model ensem-
ble methods. Bagging is largely identical to random restarts,
while NCL exhibits a sharp transition with λ.



Figure 9: Full ensemble AUC and accuracy results by method and ensemble size. LIT usually beats baselines when train 6= test,
but the optimal ensemble size (cross-validated in the result tables in the main paper, but expanded here) can vary.

Figure 10: Empirical relationship between our similarity metric (or penalty) ∇cos2 and more classic measures of prediction
similarity such as error correlation (ρav) and the Q-statistic (Qav), with one marker for every method, λ, dataset, split, ensemble
size, and restart. In general, we find meaningful relationships between ∇cos2 and classic diversity metrics, despite the fact that
∇cos2 does not require ground-truth labels. The bottom row of this figure also shows that LIT models (green) tend to have lower
and more widely varying Qav and ρav , indicating greater ability to control heldout prediction diversity through training λ. We
also measured the interrater agreement κ but we found the results almost identical to ρav and omit them to save space.


